1 Consider the function

$$
y=\cot \left(\frac{1}{4} x\right)
$$

a Give at least one point on its graph.
The easiest might be to use $x=0$; unfortunately, $\cot \left(\frac{1}{4} \cdot 0\right)=\cot 0$ is undefined. But since we can easily take (co)tangents of $\pi / 4$, let's use $x=\pi$:

$$
\cot \left(\frac{1}{4} \cdot \pi\right)=\cot \left(\frac{\pi}{4}\right)=1
$$

Therefore, $(\pi, 1)$ is a point on the graph.
b What is the period?
The period of the (co)tangent function is π, so the period of this function is

$$
\frac{\pi}{1 / 4}=4 \pi
$$

2 Consider the sinusoidal function

$$
y=4 \sin (\pi x+2)-5
$$

a Extra credit: What are its absolute maximum and minimum values?
The average is $B=-5$, and the amplitude is $A=|4|=4$, so the maximum is

$$
M=B+A=-5+4=-1
$$

and the minimum is

$$
m=B-A=-5-4=-9 .
$$

b What is its period?
Since the angular frequency is $\omega=\pi$, the period is

$$
T=\frac{2 \pi}{\omega}=\frac{2 \pi}{\pi}=2
$$

c What is its phase shift?
Since the angular frequency is not factored out, we are given directly $\phi=-2$. Therefore, the phase shift is

$$
\psi=\frac{\phi}{\omega}=\frac{-2}{\pi}=-\frac{2}{\pi}
$$

3 Write a formula for a sinusoidal function with amplitude 3 , period 3π, and phase shift $-1 / 3$. (There are several possible answers to this question, but one whose average value is 0 is probably the easiest.)
Since the period is $T=3 \pi$, the angular frequency is

$$
\omega=\frac{2 \pi}{T}=\frac{2 \pi}{3 \pi}=\frac{2}{3}
$$

If I leave the angular frequency factored out, I can give the formula directly as

$$
y=3 \sin \frac{2}{3}\left(x+\frac{1}{3}\right)
$$

Alternatively, I can multiply the angular frequency and the phase shift to get

$$
\begin{gathered}
\phi=\omega \psi=\frac{2}{3}\left(-\frac{1}{3}\right)=-\frac{2}{9}, \\
y=3 \sin \left(\frac{2}{3} x+\frac{2}{9}\right) .
\end{gathered}
$$

so

