Evaluate (work out the value of) the following expressions; give exact results, not decimal approximations. (Show at least one intermediate step for each.)
$1 \arcsin \sin \frac{9 \pi}{8}$, or equivalently, $\sin ^{-1} \sin \frac{9 \pi}{8}$
Since $9 \pi / 8>\pi / 2$, I'll try $9 \pi / 8-2 \pi=-7 \pi / 8$, but $-7 \pi / 8<-\pi / 2$. So I'll try

$$
\pi-\frac{9 \pi}{8}=-\frac{\pi}{8}
$$

Since

$$
-\frac{\pi}{2} \leq-\frac{\pi}{8} \leq \frac{\pi}{2}
$$

that's the answer:

$$
\arcsin \sin \frac{9 \pi}{8}=-\frac{\pi}{8}
$$

$2 \tan \arcsin \frac{1}{3}$, or equivalently, $\tan \sin ^{-1} \frac{1}{3}$
Let θ be $\arcsin (1 / 3)$; we want to find $\tan \theta$. Now, $\sin \theta=1 / 3$ and $-\pi / 2 \leq \theta \leq \pi / 2$, so

$$
\cos \theta=\sqrt{1-\sin ^{2} \theta}=\sqrt{1-\left(\frac{1}{3}\right)^{2}}=\frac{2 \sqrt{2}}{3}
$$

so

$$
\tan \arcsin \frac{1}{3}=\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{1 / 3}{2 \sqrt{2} / 3}=\frac{\sqrt{2}}{4}
$$

$3 \operatorname{arccot} \sqrt{3}$, or equivalently, $\cot ^{-1} \sqrt{3}$
Since

$$
\cot \frac{\pi}{6}=\frac{\cos (\pi / 6)}{\sin (\pi / 6)}=\frac{\sqrt{3} / 2}{1 / 2}=\sqrt{3}
$$

and $0 \leq \pi / 6 \leq \pi$,

$$
\operatorname{arccot} \sqrt{3}=\frac{\pi}{6}
$$

