1 Solve

$$
\tan \theta=-\frac{\sqrt{3}}{3}
$$

giving a general formula or formulas for all solutions.
First,

$$
\arctan \left(-\frac{\sqrt{3}}{3}\right)=-\arctan \left(\frac{\sqrt{3}}{3}\right)=-\frac{\pi}{6}
$$

so the general solution is

$$
\theta=-\frac{\pi}{6}+\pi k
$$

for k any integer.
2 Solve

$$
\sin 3 \theta=-1
$$

for $0 \leq \theta<2 \pi$.
I care about what 3θ can be:

$$
\begin{gathered}
0 \leq \theta<2 \pi \\
0 \leq 3 \theta<6 \pi
\end{gathered}
$$

In general,

$$
3 \theta=-\frac{\pi}{2}+2 \pi k
$$

for k any integer; within this range,

$$
3 \theta=\frac{3 \pi}{2}, \frac{7 \pi}{2}, \frac{11 \pi}{2}
$$

Therefore,

$$
\theta=\frac{\pi}{2}, \frac{7 \pi}{6}, \frac{11 \pi}{6} .
$$

3 Solve

$$
\sec \theta=-4
$$

for $0 \leq \theta<2 \pi$. You may leave your answer in terms of inverse trigonometric operations, or you may use a calculator to find decimal approximations.

To use my calculator, I need the cosine instead of the secant:

$$
\begin{aligned}
& \sec \theta=-4 \\
& \frac{1}{\cos \theta}=-4 \\
& \cos \theta=-\frac{1}{4}
\end{aligned}
$$

Within the stated range, then, my solutions are

$$
\theta=\arccos \left(-\frac{1}{4}\right), 2 \pi-\arccos \left(-\frac{1}{4}\right) .
$$

Using my calculator to approximate this,

$$
\theta \approx 1.823,4.460
$$

or

$$
\theta \approx 104.5^{\circ}, 255.5^{\circ}
$$

