1 Find $\sin \frac{17 \pi}{12}$ exactly. Show at least one intermediate step showing your usage of a sum or difference formula.

First,

$$
\frac{17 \pi}{12}=\frac{8 \pi}{12}+\frac{9 \pi}{12}=\frac{2 \pi}{3}+\frac{3 \pi}{4}
$$

So

$$
\begin{aligned}
\sin \frac{17 \pi}{12} & =\sin \left(\frac{2 \pi}{3}+\frac{3 \pi}{4}\right)=\sin \frac{2 \pi}{3} \cos \frac{3 \pi}{4}+\cos \frac{2 \pi}{3} \sin \frac{3 \pi}{4} \\
& =\left(\frac{\sqrt{3}}{2}\right)\left(-\frac{\sqrt{2}}{2}\right)+\left(-\frac{1}{2}\right)\left(\frac{\sqrt{2}}{2}\right)=-\frac{\sqrt{6}}{4}-\frac{\sqrt{2}}{4}=-\frac{\sqrt{2}+\sqrt{6}}{4}
\end{aligned}
$$

2 Suppose that you have angles α and β with these properties:

- $\tan \alpha=-4 / 3$,
- $\pi / 2<\alpha<\pi$,
- $\cos \beta=1 / 2$, and
- $0<\beta<\pi / 2$.

Find the following.
$a \tan \beta$
Since $0 \leq \beta \leq \pi$,

$$
\sin \beta=\sqrt{1-\cos ^{2} \beta}=\sqrt{1-\left(\frac{1}{2}\right)^{2}}=\frac{\sqrt{3}}{2}
$$

so

$$
\tan \beta=\frac{\sin \beta}{\cos \beta}=\frac{\sqrt{3} / 2}{1 / 2}=\sqrt{3}
$$

$b \tan (\alpha-\beta)$
Since I know $\tan \alpha$ and $\tan \beta$, I'll use the formula for a difference of tangents:

$$
\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}=\frac{\left(-\frac{4}{3}\right)-(\sqrt{3})}{1+\left(-\frac{4}{3}\right)(\sqrt{3})}=\frac{-4-3 \sqrt{3}}{3-4 \sqrt{3}}=\frac{-48-25 \sqrt{3}}{-39}=\frac{48+25 \sqrt{3}}{39} .
$$

