1 Consider this right triangle, with a positive angle θ and lengths as marked:

12
a What is the length of the unlabelled side?
Using the Pythagorean Theorem, it's

$$
\sqrt{5^{2}+12^{2}}=13
$$

b What is $\sin \theta$?
It's the ratio of the opposite leg to the hypotenuse:

$$
\sin \theta=\frac{5}{13} .
$$

2 Suppose that θ is an angle such that

- $\sin \theta=\frac{1}{2}$ and
- $\cos \theta=\frac{\sqrt{3}}{2}$.

What is $\cot \theta$? Either draw a diagram or show a calculation before the final answer.
If I use a diagram, then the hypotenuse is 2 , the opposite leg is 1 , and the adjacent leg is $\sqrt{3}$. Then the cotangent is

$$
\cot \theta=\frac{\sqrt{3}}{1}=\sqrt{3} .
$$

Alternatively, I can use a formula:

$$
\cot \theta=\frac{\cos \theta}{\sin \theta}=\frac{\sqrt{3} / 2}{1 / 2}=\sqrt{3}
$$

3 Suppose that θ is an acute angle such that $\sec \theta=3$.
a What is $\cos \theta$?
The cosine and the secant are reciprocals:

$$
\cos \theta=\frac{1}{\sec \theta}=\frac{1}{3} .
$$

b What is $\sin \theta$? Either draw a diagram or show a calculation before the final answer.
If I use a diagram, then the hypotenuse is 3 and the adjacent leg is 1 , so the oppose leg is $\sqrt{3^{2}-1^{2}}=$ $2 \sqrt{2}$. Then the sine is

$$
\sin \theta=\frac{2 \sqrt{2}}{3}
$$

Alternatively, I can use a formula:

$$
\sin \theta=\sqrt{1-\cos ^{2} \theta}=\sqrt{1-\left(\frac{1}{3}\right)^{2}}=\frac{2 \sqrt{2}}{3}
$$

