Quiz 5

Evaluate (work out the value of) the following expressions; give exact results, not decimal approximations. (Show at least one intermediate step for each.)

 $1 \ 4\cos 45^{\circ} - 2\sin 45^{\circ}$

First, $\sin 45^\circ = \sqrt{2}/2$, and $\cos 45^\circ = \sqrt{2}/2$ (the same). (If you get these from a diagram, then you might get them as $1/\sqrt{2}$, which you can then rationalise to $\sqrt{2}/2$.) Therefore,

$$4\cos 45^\circ - 2\sin 45^\circ = 4\left(\frac{\sqrt{2}}{2}\right) - 2\left(\frac{\sqrt{2}}{2}\right) = \sqrt{2}$$

 $\mathbf{2} \quad \sec\frac{\pi}{4} + 2\csc\frac{\pi}{3}$

First, $\cos(\pi/4) = \sqrt{2}/2$, so $\sec(\pi/4) = 1/\cos(\pi/4) = 1/(\sqrt{2}/2) = \sqrt{2}$. (You could also get this from a diagram as $\sqrt{2}/1$.) Next, $\sin(\pi/3) = \sqrt{3}/2$, so $\csc(\pi/3) = 1/\sin(\pi/3) = 1/(\sqrt{3}/3) = 2\sqrt{3}/3$. (You could also get this from a diagram as $2/\sqrt{3}$.) Therefore,

$$\sec\frac{\pi}{4} + 2\csc\frac{\pi}{3} = \sqrt{2} + 2\left(\frac{2\sqrt{3}}{3}\right) = \sqrt{2} + \frac{4\sqrt{3}}{3}$$

 $3 \sin^2 30^\circ + \cos^2 60^\circ$

First, $\sin 30^\circ = \sqrt{1/2} = 1/2$, and $\cos 60^\circ = \sqrt{1/2} = 1/2$ (the same). (You could also get these directly from a diagram.) Therefore,

$$\sin^2 30^\circ + \cos^2 60^\circ = (\sin 30^\circ)^2 + (\cos 60^\circ)^2 = \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{1}{2}.$$