Evaluate (work out the value of) the following expressions; give exact results, not decimal approximations. (Show at least one intermediate step for each.)
$14 \cos 45^{\circ}-2 \sin 45^{\circ}$
First, $\sin 45^{\circ}=\sqrt{2} / 2$, and $\cos 45^{\circ}=\sqrt{2} / 2$ (the same). (If you get these from a diagram, then you might get them as $1 / \sqrt{2}$, which you can then rationalise to $\sqrt{2} / 2$.) Therefore,

$$
4 \cos 45^{\circ}-2 \sin 45^{\circ}=4\left(\frac{\sqrt{2}}{2}\right)-2\left(\frac{\sqrt{2}}{2}\right)=\sqrt{2}
$$

$2 \sec \frac{\pi}{4}+2 \csc \frac{\pi}{3}$
First, $\cos (\pi / 4)=\sqrt{2} / 2$, so $\sec (\pi / 4)=1 / \cos (\pi / 4)=1 /(\sqrt{2} / 2)=\sqrt{2}$. (You could also get this from a diagram as $\sqrt{2} / 1$.) Next, $\sin (\pi / 3)=\sqrt{3} / 2$, so $\csc (\pi / 3)=1 / \sin (\pi / 3)=1 /(\sqrt{3} / 3)=2 \sqrt{3} / 3$. (You could also get this from a diagram as $2 / \sqrt{3}$.) Therefore,

$$
\sec \frac{\pi}{4}+2 \csc \frac{\pi}{3}=\sqrt{2}+2\left(\frac{2 \sqrt{3}}{3}\right)=\sqrt{2}+\frac{4 \sqrt{3}}{3}
$$

$3 \sin ^{2} 30^{\circ}+\cos ^{2} 60^{\circ}$
First, $\sin 30^{\circ}=\sqrt{1} / 2=1 / 2$, and $\cos 60^{\circ}=\sqrt{1} / 2=1 / 2$ (the same). (You could also get these directly from a diagram.) Therefore,

$$
\sin ^{2} 30^{\circ}+\cos ^{2} 60^{\circ}=\left(\sin 30^{\circ}\right)^{2}+\left(\cos 60^{\circ}\right)^{2}=\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}=\frac{1}{2}
$$

