1 If $\sec \theta=2$ and $\sin \theta$ is negative, then what is $\tan \theta$? (Show at least one intermediate step, such as a relevant diagram, equation, or numerical calculation.)
Since $\sec \theta$ is the reciprocal of $\cos \theta, \cos \theta=1 / 2$. Since $\sin \theta$ is negative,

$$
\sin \theta=-\sqrt{1-(\cos \theta)^{2}}=-\sqrt{1-\left(\frac{1}{2}\right)^{2}}=-\sqrt{\frac{3}{4}}=-\frac{\sqrt{3}}{2}
$$

Therefore,

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{-\sqrt{3} / 2}{1 / 2}=-\sqrt{3} .
$$

2 Let θ be an angle at the origin from the positive horizontal axis to the ray through $(3,-4)$. What is $\sin \theta$? (Show at least one intermediate step, such as a relevant diagram, equation, or numerical calculation.)
The radius of the circle through that point centred at the origin is

$$
\sqrt{(3)^{2}+(-4)^{2}}=\sqrt{25}=5
$$

so

$$
\sin \theta=\frac{-4}{5}=-\frac{4}{5}
$$

3 Give a number t such that $\sec t$ is undefined.
The secant function is defined everywhere except at odd multiples of $\pi / 2$, so the simplest answer is simply

$$
t=\frac{\pi}{2}
$$

itself.
4 Extra credit: Give the range of the cosecant function in interval notation.
The cosecant function can take any value except those strictly between -1 and 1 , so its range is

$$
(-\infty,-1] \cup[1, \infty)
$$

