1 Draw a graph in (x, y) of the equation

$$
y=2 \sin \left(\frac{1}{2} x\right) .
$$

Draw enough to show the entire pattern, and label coordinates on at least three points with different y values.
The amplitude is 2 , the average is 0 , and the period is $\frac{2 \pi}{1 / 2}=4 \pi$. The graph looks like this:

Three points on it are $(0,0)$ (the origin), $(\pi, 2)$ (the first local maximum on the positive side), and ($3 \pi,-2$) (the first local minimum on the positive side).

2 Write a formula for a sinusoidal function with amplitude 3 and period π. (There are several possible answers to this question, but one that goes through $(0,0)$ is probably the easiest.)

Since the period is π, the angular frequence is $\frac{2 \pi}{\pi}=2$. Therefore, the simplest formula is

$$
y=3 \sin 2 x
$$

3 Give the y-intercept of the graph with the equation

$$
y=\tan x .
$$

Since $\tan 0=0$, the y-intercept is $(0,0)($ or $y=0)$.

