9.3.9 I have $a=2, B=45^{\circ}$, and $c=4$. I apply the Law of Cosines with B as the favoured angle:

$$
\begin{gathered}
a^{2}-2 a c \cos B+c^{2}=b^{2} \\
b=\sqrt{a^{2}-2 a c \cos B+c^{2}}=\sqrt{(2)^{2}-2(2)(4) \cos \left(45^{\circ}\right)+(4)^{2}}=\sqrt{4-16 \frac{\sqrt{2}}{2}+16}=2 \sqrt{5-2 \sqrt{2}} \approx 2.95 .
\end{gathered}
$$

I could now use the Law of Sines to find another angle, but it's surer to use the Law of Cosines again:
$C=\arccos \frac{a^{2}-c^{2}+b^{2}}{2 a b}=\arccos \frac{(2)^{2}-(4)^{2}+(2 \sqrt{5-2 \sqrt{2}})^{2}}{2(2)(2 \sqrt{5-2 \sqrt{2}})}=\arccos \frac{\sqrt{5-2 \sqrt{2}}-\sqrt{10-4 \sqrt{2}}}{5-2 \sqrt{2}} \approx 106.3^{\circ}$.
I could now find the last angle by subtracting from 180°, but I'll use the Law of Cosines once more, as a check:
$b^{2}-2 b c \cos A+c^{2}=a^{2} ;$
$A=\arccos \frac{b^{2}-a^{2}+c^{2}}{2 b c}=\arccos \frac{(2 \sqrt{5-2 \sqrt{2}})^{2}-(2)^{2}+(4)^{2}}{2(2 \sqrt{5-2 \sqrt{2}})(4)}=\arccos \frac{4 \sqrt{5-2 \sqrt{2}}-\sqrt{10-4 \sqrt{2}}}{10-4 \sqrt{2}} \approx 28.7^{\circ}$.
Then as a check, $28.7^{\circ}+45^{\circ}+106.3^{\circ}=180^{\circ}$, as expected.
9.3.15 I have $a=9, b=6$, and $c=4$. I apply the Law of Cosines with any one angle to begin with:

$$
\begin{gathered}
a^{2}-2 a b \cos C+b^{2}=c^{2} ; \\
C=\arccos \frac{a^{2}-c^{2}+b^{2}}{2 a b}=\arccos \frac{(9)^{2}-(4)^{2}+(6)^{2}}{2(9)(6)}=\arccos \frac{101}{108} \approx 20.7^{\circ} .
\end{gathered}
$$

I could now use the Law of Sines to find another angle, but it's surer to use the Law of Cosines again:

$$
\begin{gathered}
a^{2}-2 a c \cos B+c^{2}=b^{2} ; \\
B=\arccos \frac{a^{2}-b^{2}+c^{2}}{2 a c}=\arccos \frac{(9)^{2}-(6)^{2}+(4)^{2}}{2(9)(4)}=\arccos \frac{61}{72} \approx 32.1^{\circ} .
\end{gathered}
$$

I could now find the last angle by subtracting from 180°, but $I^{\prime} l l$ use the Law of Cosines once more, as a check:

$$
A=\arccos \frac{b^{2}-a^{2}+c^{2}}{2 b c}=\arccos \frac{(6)^{2}-(9)^{2}+(4)^{2}}{2(6)(4)}=\arccos \left(-\frac{29}{48}\right) \approx 127.2^{\circ} .
$$

Then as a check, $127.2^{\circ}+32.1^{\circ}+20.7^{\circ}=180^{\circ}$, as expected.

