1 What is 24° in radians?
a $\frac{\pi}{15} \approx 0.209$
b $\frac{1}{15} \approx 0.067$
c $\frac{2}{15} \approx 0.133$
d $\frac{2 \pi}{15} \approx 0.419$
2 What is $9 \pi / 10$ in degrees?
a 0.005°
b 162°
c 324°
d 0.9°

3 What is the exact value of $\cos (3 \pi / 4)$?
a $\frac{\sqrt{2}}{2}$
b $\frac{\sqrt{3}}{2}$
$c-\frac{\sqrt{2}}{2}$
$d-\frac{\sqrt{3}}{2}$

4 What is the exact value of $\sec (\pi / 3)$?
a 2
b $\frac{2 \sqrt{3}}{3}$
c $\frac{\sqrt{3}}{2}$
d $\frac{1}{2}$

5 What is the exact value of $\cot \left(-90^{\circ}\right)$?
a 1
b -1
c undefined
d 0

6 What are the amplitude and period of the function

$$
f(x)=-\frac{1}{2} \sin (2 x) ?
$$

a The amplitude is $-\frac{1}{2}$, and the period is 2 .
b The amplitude is 2 , and the period is $\frac{1}{2}$.
c The amplitude is $\frac{1}{2}$, and the period is π.
d The amplitude is 2π, and the period is 2 .
7 What is the graph of the function $f(x)=3 \cos (\pi x)$?

a

8 What is $\operatorname{arccot}(-\sqrt{3})=\cot ^{-1}(-\sqrt{3})$?
a $-\frac{\pi}{6}$
b $\frac{5 \pi}{6}$
c $\frac{\pi}{6}$
d $\frac{\pi}{3}$
9 What is the exact value of $\cos 105^{\circ}$?
$a-\frac{\sqrt{2}+\sqrt{6}}{4}=\frac{-\sqrt{2}-\sqrt{6}}{4}=\frac{\sqrt{2+\sqrt{3}}}{2}$
$b \frac{\sqrt{2}-\sqrt{6}}{4}=-\frac{\sqrt{2-\sqrt{3}}}{2}$
$c \frac{\sqrt{6}-\sqrt{2}}{4}=\frac{\sqrt{2-\sqrt{3}}}{2}$
$d \frac{\sqrt{2}+\sqrt{6}}{4}=\frac{\sqrt{2+\sqrt{3}}}{2}$
10 Solve the equation $2 \cos \theta+1=2$ for $0 \leq \theta<2 \pi$.
a $\theta=\frac{\pi}{3}, \frac{2 \pi}{3}$
$b \quad \theta=\frac{\pi}{3}, \frac{4 \pi}{3}$
c $\theta=\frac{\pi}{3}$
$d \theta=\frac{\pi}{3}, \frac{5 \pi}{3}$
11 A triangle has a side of length 3 and a side of length 4 . The angle between these two sides has measure 40°. To solve this triangle, which other quantity should you calculate first?
a the measure of the angle opposite the side of length 4
b the measure of the angle opposite the side of length 3
c either of the above (it makes no difference)
d the length of the side opposite the angle of measure 40°

12 Extra credit: Solve the triangle in the previous exercise completely. (Show what equations you solve or what numerical calculations you make.)

13 A triangle has a side of length 5 , and the angle opposite this side has measure 50°. Another side has length 2 . How many triangles (up to congruence) meet this description?
a none
b one
c two
d three

14 Write $(x, y)=(-4,4)$ in polar coordinates, using $r \geq 0$ and $0 \leq \theta<2 \pi$.
$a(r, \theta)=\left(4, \frac{5 \pi}{4}\right)$
$b(r, \theta)=\left(-4 \sqrt{2}, \frac{\pi}{4}\right)$
$c(r, \theta)=\left(4 \sqrt{2}, \frac{3 \pi}{4}\right)$
$d(r, \theta)=\left(2 \sqrt{2}, \frac{7 \pi}{4}\right)$
15 Write $(r, \theta)=(2, \pi / 2)$ in rectangular coordinates.
$a \quad(x, y)=(2,0)$
$b(x, y)=(0,-2)$
$c(x, y)=(-2,0)$
$d(x, y)=(0,2)$

Answers

$1 \mathrm{D}, 2 \mathrm{~B}, 3 \mathrm{C}, 4 \mathrm{~A}, 5 \mathrm{D}, 6 \mathrm{C}, 7 \mathrm{~A}, 8 \mathrm{~B}, 9 \mathrm{D}, 10 \mathrm{D}, 11 \mathrm{D}, 13 \mathrm{~B}, 14 \mathrm{C}, 15 \mathrm{D}$
12 Given $a=3, b=4$, and $C=40^{\circ}$,

$$
c=\sqrt{(3)^{2}-2(3)(4) \cos \left(40^{\circ}\right)+(4)^{2}}=\sqrt{25-24 \cos 40^{\circ}} \approx 2.57
$$

Then

$$
A=\arccos \frac{(4)^{2}+\left(\sqrt{25-24 \cos 40^{\circ}}\right)^{2}-(3)^{2}}{2(4)\left(\sqrt{25-24 \cos 40^{\circ}}\right)}=\arccos \frac{4-3 \cos 40^{\circ}}{\sqrt{25-24 \cos 40^{\circ}}} \approx 48.6^{\circ}
$$

and

$$
B=\arccos \frac{(3)^{2}+\left(\sqrt{25-24 \cos 40^{\circ}}\right)^{2}-(4)^{2}}{2(3)\left(\sqrt{25-24 \cos 40^{\circ}}\right)}=\arccos \frac{3-4 \cos 40^{\circ}}{\sqrt{25-24 \cos 40^{\circ}}} \approx 91.4^{\circ}
$$

