Inverse trigonometric operations

You only need one inverse trigonometric operation, say $\sin ^{-1}$:

- $\cos ^{-1} x=\frac{\pi}{2}-\sin ^{-1} x ;$
- $\tan ^{-1} x=\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+1}}\right)$;
- $\cot ^{-1} x=\frac{\pi}{2}-\tan ^{-1} x=\frac{\pi}{2}-\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+1}}\right)$;
- $\sec ^{-1} x=\cos ^{-1}\left(\frac{1}{x}\right)=\frac{\pi}{2}-\sin ^{-1}\left(\frac{1}{x}\right)$;
- $\csc ^{-1} x=\sin ^{-1}\left(\frac{1}{x}\right)$.

Another important fact is that

$$
\cos \left(\sin ^{-1} x\right)=\sqrt{1-x^{2}}
$$

using this (and $\sin \left(\sin ^{-1} x\right)=x$), you can get an expression for any trigonometric operation applied to an inverse sine. Combined with the rules in the earlier list above, along with the cofunction identities $(\cos (\pi / 2-\theta)=\sin \theta$ etc $)$, you can get an expression for any trigonometric operation applied to any inverse trigonometric operation.

For example, what is $\cot \left(\sec ^{-1} x\right)$? It is

$$
\begin{aligned}
\cot \left(\sec ^{-1} x\right) & =\cot \left(\frac{\pi}{2}-\sin ^{-1}\left(\frac{1}{x}\right)\right)=\tan \left(\sin ^{-1}\left(\frac{1}{x}\right)\right)=\frac{\sin \left(\sin ^{-1}\left(\frac{1}{x}\right)\right)}{\cos \left(\sin ^{-1}\left(\frac{1}{x}\right)\right)} \\
& =\frac{1 / x}{\sqrt{1-\left(\frac{1}{x}\right)^{2}}}=\frac{1 / x}{\sqrt{\frac{x^{2}-1}{x^{2}}}}=\frac{1 / x}{\sqrt{x^{2}-1} /|x|}=\frac{|x|}{x \sqrt{x^{2}-1}}=\frac{|x| \sqrt{x^{2}-1}}{x\left(x^{2}-1\right)}
\end{aligned}
$$

(If $x>0$, then this simplifies to $\sqrt{x^{2}-1} /\left(x^{2}-1\right)$.) This is about as complicated as it can get.

