Practice Problems

These problems are not to be handed in, but try them first; do as many of them as you need until they're easy, or make up more along the same lines if you need more practice.

Approximate the following integrals using Riemann sums with 8 terms.
$1 \int_{1}^{2} \frac{\mathrm{~d} t}{t}$
$2 \int_{0}^{1} \frac{\mathrm{~d} x}{x^{2}+1}$
$3 \int_{-1}^{1} \mathrm{e}^{-z^{2} / 2} \mathrm{~d} z$
$4 \int_{0}^{1} \sqrt{1-x^{2}} \mathrm{~d} x$

Due Problems

These problems are due December 6 Tuesday.
For each of the following integrals approximate it using Riemann sums with 4 terms; use either a lower or upper Riemann sum. Extra credit: Do both, and state how precisely you have the true value of the integral.
$1 \int_{0}^{4} \sqrt{x^{2}+3} \mathrm{~d} x$
$2 \int_{1}^{2} \frac{x^{2}}{x+5} \mathrm{~d} x$

Answers to Practice Problems

Here are the answers to the Practice Problems from the beginning of the assignment.
1 First, a technicality: I take the integrand $\mathrm{d} t / t$, divide by $\mathrm{d} t$ to get $1 / t$, and differentiate to get $-1 / t^{2} \mathrm{~d} t$. Since $-1 / t^{2}$ is negative for t between 1 and 2 , I know that $1 / t$ is decreasing there. (Really, you could see this by drawing a quick graph.) Thus, the lower Riemann sum will come by using larger values of t while the upper Riemann sum will come by using smaller values of t.

If I divide the interval from 1 to 2 into 8 pieces, then each piece has a width of $\frac{2-1}{8}=$ 0.125. For the lower Riemann sum, Ill calculate heights from $t=1+0.125$ to $t=2$, always rounding down; for the upper Riemann sum, I'll calculate heights form $t=1$ to $t=2-0.125$, always rounding up. Either way, I'll add up all of these heights and multiply the total by 0.125 . The calculations are in the following table:

t	lower Riemann sum	upper Riemann sum
1	(not used)	1
1.125	0.888	0.889
1.25	0.8	0.8
1.375	0.727	0.728
1.5	0.666	0.667
1.625	0.615	0.616
1.75	0.571	0.572
1.875	0.533	0.534
2	0.5	(not used)
total	5.300	5.806

Therefore, the lower Riemann sum is $5.300 \cdot 0.125 \approx 0.662$, while the upper Riemann sum is $5.806 \cdot 0.125 \approx 0.726$.

Therefore, I conclude that

$$
\int_{1}^{2} \frac{\mathrm{~d} t}{t} \approx 0.7
$$

to one decimal place. (As it happens, the correct value is $\ln 2 \approx 0.693$, which a scientific calculator can find quickly and efficiently using a variation of the method above.)

2 First, a technicality: I take the integrand $\mathrm{d} x /\left(x^{2}+1\right)$, divide by $\mathrm{d} x$ to get $1 /\left(x^{2}+1\right)$, and differentiate to get $-2 x /\left(x^{2}+1\right)^{2} \mathrm{~d} x$. Since $-2 x /\left(x^{2}+1\right)^{2}$ is negative for x between 0 and 1 , I know that $1 /\left(x^{2}+1\right)$ is decreasing there. (Really, you could see this by drawing a quick graph.) Thus, the lower Riemann sum will come by using larger values of x while the upper Riemann sum will come by using smaller values of x.

If I divide the interval from 0 to 1 into 8 pieces, then each piece has a width of $\frac{1-0}{8}=$ 0.125 . For the lower Riemann sum, I'll calculate heights from $x=0+0.125$ to $x=1$, always rounding down; for the upper Riemann sum, I'll calculate heights form $x=0$ to $x=1-0.125$, always rounding up. Either way, I'll add up all of these heights and multiply the total by 0.125 . The calculations are in the following table:

x	lower Riemann sum	upper Riemann sum
0	(not used)	1
0.125	0.984	0.985
0.25	0.941	0.942
0.375	0.876	0.877
0.5	0.8	0.8
0.625	0.719	0.720
0.75	0.64	0.64
0.875	0.566	0.567
1	0.5	(not used)
total	6.026	6.531

Therefore, the lower Riemann sum is $6.026 \cdot 0.125 \approx 0.753$, while the upper Riemann sum is $6.531 \cdot 0.125 \approx 0.817$.

Therefore, I conclude that

$$
\int_{0}^{1} \frac{\mathrm{~d} x}{x^{2}+1} \approx 0.8
$$

to one decimal place. (As it happens, the correct value is $\pi / 4 \approx 0.785$, which you can calculate using trigonometry.)

3 First, a technicality: I take the integrand $\mathrm{e}^{-z^{2} / 2} \mathrm{~d} z$, divide by $\mathrm{d} z$ to get $\mathrm{e}^{-z^{2} / 2}$, and differentiate to get $-z \mathrm{e}^{-z^{2} / 2} \mathrm{~d} z$. Since $-z \mathrm{e}^{-z^{2} / 2}$ is positive for x between -1 and 0 , I know that $\mathrm{e}^{-z^{2} / 2}$ is increasing there; since $-z \mathrm{e}^{-z^{2} / 2}$ is negative for x between 0 and 1 , I know that $\mathrm{e}^{-z^{2} / 2}$ is decreasing there. (Really, you could see this by drawing a quick graph.) Thus, the lower Riemann sum will come by using first smaller values of z and then larger values, while the upper Riemann sum will come by using first larger values of z and then small values.

If I divide the interval from -1 to 1 into 8 pieces, then each piece has a width of $\frac{1--1}{8}=0.25$. For the lower Riemann sum, I'll calculate heights from $x=-1$ to $x=0-$ 0.25 and then from $x=0+0.25$ to $x=1$, always rounding down; for the upper Riemann sum, I'll calculate heights form $x=-1+0.25$ to $x=0$ and then from $x=0$ (again!) to $x=1-0.25$, always rounding up. Either way, I'll add up all of these heights and multiply the total by 0.25 . The calculations are in the following table:
x lower Riemann sum upper Riemann sum
$-1 \quad 0.606 \quad$ (not used)
$-0.75 \quad 0.754 \quad 0.755$
$\begin{array}{lll}-0.5 & 0.882 & 0.883\end{array}$
$-0.25 \quad 0.969 \quad 0.970$
0 (not used) 1 (used twice)
$0.25 \quad 0.969 \quad 0.970$
$\begin{array}{lll}0.5 & 0.882 & 0.883\end{array}$
$\begin{array}{lll}0.75 & 0.754 & 0.755\end{array}$
10.606 (not used)
total $6.422 \quad 7.216$

Therefore, the lower Riemann sum is $6.422 \cdot 0.25 \approx 1.605$, while the upper Riemann sum is $7.216 \cdot 0.25 \approx 1.804$.

Therefore, I conclude that

$$
\int_{-1}^{1} \mathrm{e}^{-z^{2} / 2} \mathrm{~d} z \approx 1.7
$$

give or take one decimal place. (As it happens, the correct value is $\sqrt{2 \pi} \operatorname{erf}(\sqrt{2} / 2) \approx$ 1.711, which you can calculate using a statistics calculator.)

4 First, a technicality: I take the integrand $\sqrt{1-x^{2}} \mathrm{~d} x$, divide by $\mathrm{d} x$ to get $\sqrt{1-x^{2}}$, and differentiate to get $-x \sqrt{1-x^{2}} /\left(1-x^{2}\right) \mathrm{d} x$. Since $-x \sqrt{1-x^{2}} /\left(1-x^{2}\right)$ is negative for x between 0 and 1, I know that $\sqrt{1-x^{2}}$ is decreasing there. (Really, you could see this by drawing a quick graph.) Thus, the lower Riemann sum will come by using larger values of x while the upper Riemann sum will come by using smaller values of x.

If I divide the interval from 0 to 1 into 8 pieces, then each piece has a width of $\frac{1-0}{8}=$ 0.125 . For the lower Riemann sum, I'll calculate heights from $x=0+0.125$ to $x=1$, always rounding down; for the upper Riemann sum, I'll calculate heights form $x=0$ to $x=1-0.125$, always rounding up. Either way, I'll add up all of these heights and multiply the total by 0.125 . The calculations are in the following table:

x	lower Riemann sum	upper Riemann sum
0	(not used)	1
0.125	0.992	0.993
0.25	0.968	0.969
0.375	0.927	0.928
0.5	0.866	0.867
0.625	0.780	0.781
0.75	0.661	0.662
0.875	0.484	0.485
1	0	(not used)
total	5.678	6.685

Therefore, the lower Riemann sum is $5.678 \cdot 0.125 \approx 0.709$, while the upper Riemann sum is $6.685 \cdot 0.25 \approx 0.836$.

Therefore, I conclude that

$$
\int_{0}^{1} \sqrt{1-x^{2}} \mathrm{~d} x \approx 0.8
$$

give or take one decimal place. (As it happens, the correct value is $\pi / 4 \approx 0.785$, which you can calculate using trigonometry.)

