Practice Problems

These problems are not to be handed in, but try them first.

- From Chapter 1 Review (pages 40-42): 1-4, 11-13, 28\&29, 36\&37;
- From Chapter 2 Review (pages 120-124): 5-9, 13-16, 47-50, 71.A, 81.A, 88.A\&B, 90.A\&B.

Due Problems

These problems were due October 11 Tuesday.
1 Solve the equation

$$
S=2 A+p h
$$

for p. (Show at least one intermediate step.)
First, I swap sides to get p on the left (which you don't really have to do):

$$
2 A+p h=S
$$

Next, I subtract $2 A$ from both sides to get the p term alone:

$$
p h=S-2 A .
$$

Finally, I divide both sides by h to get p itself alone:

$$
p=\frac{S-2 A}{h} .
$$

2 Given that

$$
f(x)=2 x+3
$$

for all x, find $f(-5)$. (Show at least one intermediate step.)
I substitute -5 wherever x is:

$$
f(-5)=2(-5)+3=-10+3=-7
$$

3 A 20 -foot ladder is leaning diagonally against the side of a building. Let x be the distance along the ground from the base of the ladder to the building, and let y be the height at which the ladder reaches the building, both in feet. Write down an equation relating x and y in this situation.

The ladder is the hypotenuse of a right triangle whose legs are the distances given by x and y. Since everything is measured in feet,

$$
x^{2}+y^{2}=(20)^{2},
$$

or

$$
x^{2}+y^{2}=400
$$

