Practice Problems

These problems are not to be handed in, but try them first; do as many of them as you need until they're easy, or make up more along the same lines if you need more practice.

1 Differentiate (find the differential of) the following expressions:
a. $3 x^{2}+5 x-4$

$$
\begin{aligned}
\mathrm{d}\left(3 x^{2}+5 x-4\right) & =\mathrm{d}\left(3 x^{2}\right)+\mathrm{d}(5 x)-\mathrm{d}(4)=3 \mathrm{~d}\left(x^{2}\right)+5 \mathrm{~d} x-0 \\
& =3(2 x \mathrm{~d} x)+5 \mathrm{~d} x=6 x \mathrm{~d} x+5 \mathrm{~d} x=(6 x+5) \mathrm{d} x
\end{aligned}
$$

b. $3 \sqrt{x}-5 / x$

$$
\mathrm{d}(3 \sqrt{x}-5 / x)=3 \mathrm{~d}(\sqrt{x})-\mathrm{d}(5 / x)=3 \frac{\sqrt{x} \mathrm{~d} x}{2 x}-\left(-\frac{5 \mathrm{~d} x}{x^{2}}\right)=\left(\frac{3 \sqrt{x}}{2 x}+\frac{5}{x^{2}}\right) \mathrm{d} x
$$

c. $3 x y^{2}-2 x^{2} y$

$$
\begin{aligned}
\mathrm{d}\left(3 x y^{2}-2 x^{2} y\right) & =3 \mathrm{~d}\left(x y^{2}\right)-2 \mathrm{~d}\left(x^{2} y\right)=3\left(y^{2} \mathrm{~d} x+x \mathrm{~d}\left(y^{2}\right)\right)-2\left(y \mathrm{~d}\left(x^{2}\right)+x^{2} \mathrm{~d} y\right) \\
& =3\left(y^{2} \mathrm{~d} x+2 x y \mathrm{~d} y\right)-2\left(2 x y \mathrm{~d} x+x^{2} \mathrm{~d} y\right) \\
& =\left(3 y^{2}-4 x y\right) \mathrm{d} x+\left(6 x y-2 x^{2}\right) \mathrm{d} y
\end{aligned}
$$

d. $\frac{x-a}{x+a}$ if a is a constant

$$
\begin{aligned}
\mathrm{d}\left(\frac{x-a}{x+a}\right) & =\frac{(x+a) \mathrm{d}(x-a)-(x-a) \mathrm{d}(x+a)}{(x+a)^{2}}=\frac{(x+a) \mathrm{d} x-(x-a) \mathrm{d} x}{(x+a)^{2}} \\
& =\frac{x \mathrm{~d} x+a \mathrm{~d} x-x \mathrm{~d} x+a \mathrm{~d} x}{(x+a)^{2}}=\frac{2 a \mathrm{~d} x}{(x+a)^{2}}
\end{aligned}
$$

2 Differentiate the following equations:
a. $y=5 x^{3}-4 x^{2}+3 x$

$$
\begin{aligned}
\mathrm{d} y & =\mathrm{d}\left(5 x^{3}-4 x^{2}+3 x\right) \\
& =5 \mathrm{~d}\left(x^{3}\right)-4 \mathrm{~d}\left(x^{2}\right)+3 \mathrm{~d} x \\
& =5\left(3 x^{2} \mathrm{~d} x\right)-4(2 x \mathrm{~d} x)+3 \mathrm{~d} x \\
\mathrm{~d} y & =\left(15 x^{2}-8 x+3\right) \mathrm{d} x
\end{aligned}
$$

b. $q=\frac{12}{p+5}-10$

$$
\begin{aligned}
\mathrm{d} q & =\mathrm{d}\left(\frac{12}{p+5}-10\right) \\
& =-\frac{12 \mathrm{~d}(p+5)}{(p+5)^{2}}-0 \\
\mathrm{~d} q & =-\frac{12 \mathrm{~d} p}{(p+5)^{2}}
\end{aligned}
$$

c. $x^{2}+y^{2}=1$

$$
\begin{aligned}
\mathrm{d}\left(x^{2}+y^{2}\right) & =\mathrm{d}(1) \\
\mathrm{d}\left(x^{2}\right)+\mathrm{d}\left(y^{2}\right) & =0 \\
2 x \mathrm{~d} x+2 y \mathrm{~d} y & =0
\end{aligned}
$$

d. $(x+y)^{2}=1$

$$
\begin{aligned}
\mathrm{d}\left((x+y)^{2}\right) & =\mathrm{d}(1) \\
2(x+y) \mathrm{d}(x+y) & =0 \\
(2 x+2 y)(\mathrm{d} x+\mathrm{d} y) & =0 \\
(2 x+2 y) \mathrm{d} x+(2 x+2 y) \mathrm{d} y & =0
\end{aligned}
$$

3 Find the derivative (sensitivity) of y with respect to x :
a. $y=5 x^{3}-4 x^{2}+3 x$

$$
\begin{aligned}
\mathrm{d} y & =\mathrm{d}\left(5 x^{3}-4 x^{2}+3 x\right) \\
\mathrm{d} y & =\left(15 x^{2}-8 x+3\right) \mathrm{d} x \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =15 x^{2}-8 x+3
\end{aligned}
$$

b. $y=\frac{12}{x+5}-10$

$$
\begin{aligned}
\mathrm{d} y & =\mathrm{d}\left(\frac{12}{x+5}-10\right) \\
\mathrm{d} y & =-\frac{12 \mathrm{~d} x}{(x+5)^{2}} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =-\frac{12}{(x+5)^{2}}
\end{aligned}
$$

c. $x^{2}+y^{2}=1$

$$
\begin{aligned}
\mathrm{d}\left(x^{2}+y^{2}\right) & =\mathrm{d}(1) \\
2 x \mathrm{~d} x+2 y \mathrm{~d} y & =0 \\
2 y \mathrm{~d} y & =-2 x \mathrm{~d} x \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =-\frac{2 x}{2 y} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =-\frac{x}{y}
\end{aligned}
$$

d. $(x+y)^{2}=1$

$$
\begin{aligned}
\mathrm{d}\left((x+y)^{2}\right) & =\mathrm{d}(1) \\
(2 x+2 y) \mathrm{d} x+(2 x+2 y) \mathrm{d} y & =0 \\
(2 x+2 y) \mathrm{d} y & =-(2 x+2 y) \mathrm{d} x \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =-\frac{2 x+2 y}{2 x+2 y} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =-1
\end{aligned}
$$

Page 2 of 3

Due Problems

These problems were due October 18 Tuesday.
1 Differentiate (find the differential of)

$$
2 x^{5}-3 / x+\sqrt{4 x}
$$

(Show at least one intermediate step.)

$$
\begin{aligned}
\mathrm{d}\left(2 x^{5}-3 / x+\sqrt{4 x}\right) & =2 \mathrm{~d}\left(x^{5}\right)-\mathrm{d}(3 / x)+\mathrm{d}(\sqrt{4 x})=2\left(5 x^{4} \mathrm{~d} x\right)-\frac{3 \mathrm{~d} x}{x^{2}}+\frac{\sqrt{4 x} \mathrm{~d}(4 x)}{2(4 x)} \\
& =10 x^{4} \mathrm{~d} x-\frac{3 \mathrm{~d} x}{x^{2}}+\frac{\sqrt{4 x}(4 \mathrm{~d} x)}{8 x}=\left(10 x^{4}-\frac{3}{x^{2}}+\frac{\sqrt{4 x}}{2 x}\right) \mathrm{d} x
\end{aligned}
$$

2 Suppose that

$$
y=\frac{2 x}{y-3} .
$$

Differentiate this equation. (Show at least one intermediate step.)

$$
\begin{aligned}
\mathrm{d} y & =\mathrm{d}\left(\frac{2 x}{y-3}\right) \\
& =\frac{(y-3) \mathrm{d}(2 x)-(2 x) \mathrm{d}(y-3)}{(y-3)^{2}} \\
& =\frac{(y-3)(2 \mathrm{~d} x)-(2 x) \mathrm{d} y}{(y-3)^{2}} \\
\mathrm{~d} y & =\frac{2(y-3) \mathrm{d} x-2 x \mathrm{~d} y}{(y-3)^{2}}
\end{aligned}
$$

3 Suppose that

$$
y=2 x^{5}-\frac{2}{x^{3}}
$$

always. Find the derivative (sensitivity) of y with respect to x. (Show at least one intermediate step.)

$$
\begin{aligned}
\mathrm{d} y & =\mathrm{d}\left(2 x^{5}-\frac{2}{x^{3}}\right) \\
& =2 \mathrm{~d}\left(x^{5}\right)-2 \mathrm{~d}\left(x^{-3}\right) \\
& =2\left(5 x^{4} \mathrm{~d} x\right)-2\left(-3 x^{-4} \mathrm{~d} x\right) \\
\mathrm{d} y & =\left(10 x^{4}+6 x^{-4}\right) \mathrm{d} x \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =10 x^{4}+\frac{6}{x^{4}}
\end{aligned}
$$

