Матн-1400-ез32

Notes

Here is a list of most of the rules of differentiation that you will need in Applied Calculus. (There are a few more rules, involving logarithms, that we will cover later.) The rules marked with asterisks are the ones that you absolutely must know, but the others are also handy.

In the rules below, u and v stand for variable quantities, which may be complicated expressions involving many variables (or may be very simple). On the other hand, kstands for a constant, which will usually be a simple real number (but could be something more complicated that evaluates to a constant). Also, a technicality about undefined operations (such as division by zero): what these rules state is that *if* the righthand side is defined, then so is the left-hand side and the two sides are equal.

Each rule is given with an example. In the example, the first step is the application of the rule, but there may be more steps given by applying other rules or basic algebra.

$$\begin{array}{ll} * & \mathrm{d}k = 0 & \mathrm{d}(6) = 0 \\ * & \mathrm{d}(u^k) = ku^{k-1} \mathrm{d}u & \mathrm{d}(x^5) = 5x^{5-1} \mathrm{d}x = 5x^4 \mathrm{d}x \\ & \mathrm{d}(\sqrt[k]{w}) = \frac{\sqrt[k]{u} \mathrm{d}u}{ku} & \mathrm{d}(\sqrt{x}) = \frac{\sqrt{x} \mathrm{d}x}{2x} \\ * & \mathrm{d}(vu) = v \mathrm{d}u + u \mathrm{d}v & \mathrm{d}(x^2y^3) = y^3 \mathrm{d}(x^2) + x^2 \mathrm{d}(y^3) \\ & = y^3(2x \mathrm{d}x) + x^2(3y^2 \mathrm{d}y) \\ & = 2xy^3 \mathrm{d}x + 3x^2y^2 \mathrm{d}y \\ & \mathrm{d}(ku) = k \mathrm{d}u & \mathrm{d}(3p^4) = 3 \mathrm{d}(p^4) = 3(4p^3 \mathrm{d}p) = 12p^3 \mathrm{d}p \\ & \mathrm{d}\left(\frac{u}{v}\right) = \frac{v \mathrm{d}u - u \mathrm{d}v}{v^2} & \mathrm{d}\left(\frac{x+5}{x-4}\right) = \frac{(x-4) \mathrm{d}(x+5) - (x+5) \mathrm{d}(x-4)}{(x-4)^2} \\ & = \frac{(x-4) \mathrm{d}x - (x+5) \mathrm{d}x}{(x-4)^2} = -\frac{9 \mathrm{d}x}{(x-4)^2} \\ & \mathrm{d}\left(\frac{u}{k}\right) = \frac{\mathrm{d}u}{k} & \mathrm{d}\left(\frac{x^2}{4}\right) = \frac{\mathrm{d}(x^2)}{4} = \frac{2x \mathrm{d}x}{4} = \frac{x \mathrm{d}x}{2} \\ & \mathrm{d}\left(\frac{k}{u}\right) = -\frac{k \mathrm{d}u}{u^2} & \mathrm{d}\left(\frac{1}{x}\right) = -\frac{1 \mathrm{d}x}{x^2} = -\frac{\mathrm{d}x}{x^2} \\ * & \mathrm{d}(u+v) = \mathrm{d}u + \mathrm{d}v & \mathrm{d}(x^2+3x) = \mathrm{d}(x^2) + \mathrm{d}(3x) = 2x \mathrm{d}x + 3 \mathrm{d}x = (2x+3) \mathrm{d}x \\ & \mathrm{d}(u+k) = \mathrm{d}u & \mathrm{d}(x+3) = \mathrm{d}x \\ & \mathrm{d}(u-u) = -\mathrm{d}u & \mathrm{d}(x^2-4) = \mathrm{d}(x^2) = -2x \mathrm{d}x \\ & \mathrm{d}(u-v) = \mathrm{d}u - \mathrm{d}v & \mathrm{d}(2x-3y) = \mathrm{d}(2x) - \mathrm{d}(3y) = 2 \mathrm{d}x - 3 \mathrm{d}y \\ & \mathrm{d}(u-k) = \mathrm{d}u & \mathrm{d}(x^2-4) = \mathrm{d}(x^2) = 2x \mathrm{d}x \\ & \mathrm{d}(u-k) = \mathrm{d}u & \mathrm{d}(x^2-4) = \mathrm{d}(x^2) = -2 \mathrm{d}y \end{array} \right\}$$

Notice: If you differentiate an ordinary expression involving (say) the variables x, y, and z, then the result will be (something) dx + (something) dy + (something) dz, where each (something) is an ordinary expression (no d) in those variables. If it doesn't come out like that, then you did something wrong!