
Notes Math-1400-es32 2011 October 11

This is a summary of the concepts of di�erential calculus, from the primary perspective
of the di�erential.

Di�erences
If a variable changes from the value a to the value b, then the di�erence between these
two values is b− a. More generally, if one variable quantity x changes from a to b, then
another variable quantity u may change as well, but usually between di�erent values.
Whatever the di�erence in those values is, that is the di�erence in u as x varies from a
to b. This may be denoted

∆x=b
x=au, ∆b

au, ∆u,

depending on how explicit the notation needs to be.
For example, let u be 2x + 3, and consider ∆x=5

x=4u. Calculate:

∆x=5
x=4u = ∆5

4(2x + 3) = [2(5) + 3]− [2(4) + 3] = 13− 11 = 2.

In other words, as x varies from 4 to 5, u varies from 11 to 13, and the di�erence be-
tween these is 2.

Di�erentials
The idea behind a di�erential is that it is an in�nitely small di�erence. There are vari-
ous ways to make this idea logically precise, but we will not go into that in this applied
course. (Possibly I will return to this at the end of the course, if there is time.) In place
of the uppercase Greek letter `∆' for a standard (�nitesimal) change, we use the lower-
case Latin letter `d' for an in�nitely small (in�nitesimal) change. So if u is a smoothly
varying quantity, then du is the di�erential of u, which more or less means ∆b

au when
b− a is in�nitely small (but somehow not quite zero).

Although this is usually not an issue in applied situations, it s important that u be
a smoothly varying quantity. Exactly what this means is, again, something that can be
made precise. But for now, think of it as meaning that, whenever the underlying vary-
ing reality changes by a small amount, the variable quantity u also changes by a small
amount: no sudden jumps or in�nitely fast change.

Di�erences and di�erentials of linear expressions
The following rules hold exactly for di�erences:
• ∆c = 0 if c is constant;
• ∆(u + v) = ∆u + ∆v;
• ∆(cu) = c ∆u if c is constant.

These equations hold for �nitesimal changes, so they also hold for in�nitesimal changes:
• dc = 0 if c is constant;
• d(u + v) = du + dv;
• d(cu) = c du if c is constant.
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This allows us to calculate di�erentials of linear expressions.
For example:

d(7x) = 7 dx;
d(−5x) = −5 dx;

d(x + 2) = dx + d(2) = dx + 0 = dx;
d(y − 4) = dy + d(−4) = dy + 0 = dy;

d(2t + 3) = d(2t) + d(3) = 2 dt + 0 = 2 dt;
d(7− x) = d(−1x + 7) = −1 dx + 0 = −dx;

etc.

Di�erentials of more complicated expressions
There is no simple rule for di�erences of expressions like x2, or more generally products
of variable quantities such as uv. For di�erentials, however, we have the Product Rule:

d(uv) = v du + udv.

The reason for this may be seen by the following rectangle:

v





︸ ︷︷ ︸
u

This rectangle has length u and height v, so its area is uv. However, both u and v are
increasing, so the area is also increasing. (A similar picture could be drawn if one or
both are decreasing instead.) The rectangle increases in two directions, upwards and
to the right. Upwards, the increase is a strip of length u and height dv, with an area
of udv; to the right, the increase is a strip of length v and height du, with an area of
v du. Therefore, the total change in the area, which is d(uv), is udv + v du, in accor-
dance with the Product Rule. (It is precisely because we re looking only at in�nitesimal
changes that we can ignore the movement in the upper right corner of the rectangle.)

Using the Product Rule, we can derive rules to handle more general expressions. I
will list all of the rules that we will need in other handouts; here I will show how some of
them may be proved (assuming the previous rules).
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Suppose that v 6= 0 and let w = u/v; then vw = u. Calculate:

d(vw) = du;
w dv + v dw = du;

v dw = du− w dv;

dw =
du− w dv

v
;

d
(

u

v

)
=

du− u
v dv

v
;

d
(

u

v

)
=

v du− udv

v2
.

The last line is the Quotient Rule.
Consider powers of u:

d(u2) = d(uu) = udu + udu = 2udu;
d(u3) = d(u2u) = u2 du + ud(u2) = u2 du + u(2udu) = u2 du + 2u2 du = 3u2 du;
d(u4) = d(u3u) = u3 du + ud(u3) = u3 du + u(3u2 du) = u3 du + 3u3 du = 4u3 du;

etc.

In general:
d(uc) = cuc−1 du

whenever c is a constant natural number.
Now consider negative powers. If c is a constant negative integer and u 6= 0, then

ucu−c = 1. Calculate:

d(ucu−c) = d(1);
u−c d(uc) + uc d(u−c) = 0;

u−c(cuc−1 du) + uc d(u−c) = 0;
cu−1 du + uc d(u−c) = 0;

uc d(u−c) = −cu−1 du;
d(u−c) = −cu−c−1 du.

Since also
d(u0) = d(1) = 0 = 0u−1 du

if u 6= 0, the Power Rule
d(uc) = cuc−1 du

holds whenever c is a constant integer and the right-hand side is de�ned.
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Now consider roots. If c is a constant natural number, u 6= 0, and c
√

u is de�ned as a
real quantity, then ( c

√
u)c = u. Calculate:

d
(
( c
√

u)c) = du;

c( c
√

u)c−1 d( c
√

u) = du;
cu
c
√

u
d( c
√

u) = du;

d( c
√

u) =
c
√

udu

cu
.

In other words,
d
(
u1/c

)
=

1
c
u

1
c
−1 du,

so the Power Rule holds whenever c is a constant rational number. We may then argue
that the Power Rule holds whenever c is any constant real number, because uc is sand-
wiched between the various rational powers of u.

We have now derived all of the rules that will be on the next handout, except that
some of these are special cases of the above when one quantity is constant.

Strategy for calculating di�erentials
The general method for calculating the di�erential of an expression is to work from the
outside in, reversing the order of operations to �nd out which rule to use.

For example, to di�erentiate
√

x3y + x
y−3 , we �rst use the Sum Rule, since the �nal

operation is addition. In the �rst summand, we use the rules for roots, then for multipli-
cation, then for powers; in the second summand, we use the rules for division, then for
subtraction, then for constants. So:

d
(√

x3y +
x

y − 3

)
= d

(√
x3y

)
+ d

(
x

y − 3

)

=

√
x3y d(x3y)

2x3y
+

(y − 3) dx− x d(y − 3)
(y − 3)2

=

√
x3y

(
y d(x3) + x3 dy

)

2x3y
+

(y − 3) dx− x
(
dy − d(3)

)

(y − 3)2

=

√
x3y

(
y(3x2 dx) + x3 dy

)

2x3y
+

(y − 3) dx− x(dy − 0)
(y − 3)2

=

√
x3y(3x2y dx + x3 dy)

2x3y
+

(y − 3) dx− x dy

(y − 3)2
.

The process is messy and can be tedious, but it should be straightforward.
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In Calculus, it s usually considered OK to leave an expression as above. However,
you could expand it out, simplify, and gather together the dx and dy terms:

(
3
√

x3y

2x
+

1
y − 3

)
dx +

(√
x3y

2y
− x

(y − 3)2

)
dy.

Sometimes this will be useful. In any case, it s important that this can be done; every
term in the �nal expression for a di�erential should have (as a factor) the di�erential of
one (and only one) variable.

Derivatives
If u and v are smoothly variable quantites and dv 6= 0, then v will change a little bit
whenever u does. Another way to say this is that u cannot change unless v does, so we
may view the change in u as induced by the change in v, as a result of the sensitivity
of u on changes in v. This sensitivity is measured by the derivative of u with respect
to v:

du

dv
.

Since `derivative' is a rather generic term, this may also be called the sensitivity of u
with respect to v or the rate of change of u with respect to v.

For example, if x = 3t2, then calculate:

dx = d(3t2);
dx = 3 d(t2);
dx = 3(2tdt);
dx = 6t dt;
dx

dt
= 6t.

That is, the derivative of 3t2 with respect to t is 6t.
We can go on and �nd the derivative of 6t with respect to t:

d
(

dx

dt

)
= d(6t);

d
(

dx

dt

)
= 6 dt;

d
(

dx
dt

)

dt
= 6.
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The left-hand side here is often written `d2x/dt2', but this notation does not make literal
sense the way that dx/dt does. A better way to write the left-hand side of the equation
above is as (d/dt)2x; that is, (

d
dt

)2

(3t2) = 6.

In words, the second derivative of 3t2 with respect to t is 6.
If we re not given a formula for a variable in terms of another, we can still try to

�nd the derivative as long as we re given an equation relating them. For example, sup-
pose that x2 + y2 = 1. Then calculate:

d(x2 + y2) = d(1);
d(x2) + d(y2) = 0;
2xdx + 2y dy = 0;

2y dy = −2xdx;

dy = −x

y
dx;

dy

dx
= −x

y
.

This is called the implicit method; although we ve found the derivative of y with respect
to x (assuming that y 6= 0), the expression for it involves both x and y and is not explic-
itly in terms of x alone.

Derivatives of functions
If we apply a function f to a variable x, then we may give a name to the result and say,
for example, that

y = f(x).
If we had an explicit formula for f , then we could di�erentiate both sides of this equa-
tion and �nd that dy is some expression multiplied by dx. Even without a formula for f ,
if we assume that f is a �xed smooth function (another concept that can be made pre-
cise), then dy is the product of dx and the result of applying some other function f ′.
That is,

d
(
f(x)

)
= f ′(x) dx

if f(x) depends only on x. This function f ′ is called the derivative of f , because f ′(x)
is the derivative of f(x) with respect to x. Then the derivate of f ′, denoted f ′′, is the
second derivative of f , etc.

Notice that we take the derivative of one quantity with respect to another but we
take the derivative of a function in an absolute sense; in symbols, dy/dx is the derivative
of y with respect to x, while f ′ is the derivative of f , period. Of course, the relationship
between these ideas is that

f ′(x) =
df(x)

dx
.
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