Practice Problems

The first few problems are for practice; do as many of them as you need until they're easy, or make up more for yourself along the same lines.

1 Suppose that x is a variable quantity and suppose that $y=3 x$.
a. What is $\Delta_{4}^{5}\left(x^{2}\right)$?

Just plug in and subtract:

$$
\Delta_{4}^{5}\left(x^{2}\right)=\left((5)^{2}\right)-\left((4)^{2}\right)=25-16=9
$$

b. What is $\Delta_{x=-1}^{x=4}(x y)$?

Since $y=3 x$,

$$
\Delta_{x=-1}^{x=4}(x y)=\Delta_{x=-1}^{x=4}(x(3 x))=\Delta_{-1}^{4}\left(3 x^{2}\right)=\left(3(4)^{2}\right)-\left(3(-1)^{2}\right)=48-3=45 .
$$

c. What is $\Delta_{7}^{9}\left(y^{2}\right)$?

This is not a fair question! It might mean

$$
\Delta_{y=7}^{y=9}\left(y^{2}\right)=\left((9)^{2}\right)-\left((7)^{2}\right)=81-49=32
$$

but it might mean

$$
\Delta_{x=7}^{x=9}\left(y^{2}\right)=\Delta_{x=7}^{x=9}\left((3 x)^{2}\right)=\Delta_{7}^{9}\left(9 x^{2}\right)=\left(9(9)^{2}\right)-\left(9(7)^{2}\right)=729-441=288
$$

I should never give you an unclear problem like this one!
d. What is $\Delta_{5}^{3}(x+9)$?

This is also kind of a trick question, but it is fair, and I might give you a problem like it.

$$
\Delta_{5}^{3}(x+9)=((5)+9)-((3)+9)=14-12=2
$$

2 For each of the following expressions, find its antidifferentials (indefinite integrals).
a. $3 x^{2} \mathrm{~d} x$

Running the power rule in reverse, I add 1 to the exponent and divide the coefficient by the new exponent.

$$
3 x^{2} \mathrm{~d} x=\mathrm{d}\left(\frac{3}{3} x^{3}\right)=\mathrm{d}\left(x^{3}\right)
$$

so

$$
\int 3 x^{2} \mathrm{~d} x=x^{3}+C
$$

where C is an arbitrary constant.
b. $\left(5 x^{3}-3 x+4\right) \mathrm{d} x$

Now I run the power rule in reverse for each term.

$$
\left(5 x^{3}-3 x+4\right) \mathrm{d} x=\left(5 x^{3}-3 x^{1}+4 x^{0}\right) \mathrm{d} x=\mathrm{d}\left(\frac{5}{4} x^{4}-\frac{3}{2} x^{2}+\frac{4}{1} x\right)=\mathrm{d}\left(\frac{5}{4} x^{4}-\frac{3}{2} x^{2}+4 x\right)
$$

so

$$
\int\left(5 x^{3}-3 x+4\right) \mathrm{d} x=\frac{5}{4} x^{4}-\frac{3}{2} x^{2}+4 x+C
$$

where C is an arbitrary constant.
c. $\left(\sqrt{y}+\frac{1}{y^{2}}\right) \mathrm{d} y$

I rewrite using exponents so that I can reverse the power rule.

$$
\left(\sqrt{y}+\frac{1}{y^{2}}\right) \mathrm{d} y=\left(1 y^{1 / 2}+1 y^{-2}\right) \mathrm{d} y=\mathrm{d}\left(\frac{1}{3 / 2} y^{3 / 2}+\frac{1}{-1} y^{-1}\right)=\mathrm{d}\left(\frac{2}{3} \sqrt{y^{3}}-\frac{1}{y}\right),
$$

so

$$
\int\left(\sqrt{y}+\frac{1}{y^{2}}\right) \mathrm{d} y=\frac{2}{3} \sqrt{y^{3}}-\frac{1}{y}+C
$$

where C is an arbitrary constant.
d. $\left(2 x+\frac{2}{x}\right) \mathrm{d} x$

When the exponent is -1 , the antidifferential involves a logarithm.

$$
\left(x+\frac{1}{x}\right) \mathrm{d} x=\left(1 x^{1}+1 x^{-1}\right) \mathrm{d} x=\mathrm{d}\left(\frac{1}{2} x^{2}+1 \ln |x|\right)=\mathrm{d}\left(\frac{1}{2} x^{2}+\ln |x|\right),
$$

so

$$
\int\left(x+\frac{1}{x}\right) \mathrm{d} x=\frac{1}{2} x^{2}+\ln |x|+C
$$

where C is an arbitrary constant.
3 Evaluate each of the following definite integrals.
a. $\int_{0}^{5} 3 x^{2} \mathrm{~d} x$

$$
\int_{0}^{5} 3 x^{2} \mathrm{~d} x=\int_{0}^{5} \mathrm{~d}\left(x^{3}\right)=\Delta_{0}^{5}\left(x^{3}\right)=\left((5)^{3}\right)-\left((0)^{3}\right)=125-0=125 .
$$

b. $\int_{-1}^{3}\left(5 x^{3}-3 x+4\right) \mathrm{d} x$

$$
\begin{aligned}
\int_{-1}^{3}\left(5 x^{3}-3 x+4\right) \mathrm{d} x & =\int_{-1}^{3} \mathrm{~d}\left(\frac{5}{4} x^{4}-\frac{3}{2} x^{2}+4 x\right)=\Delta_{-1}^{3}\left(\frac{5}{4} x^{4}-\frac{3}{2} x^{2}+4 x\right) \\
& =\left(\frac{5}{4}(3)^{4}-\frac{3}{2}(3)^{2}+4(3)\right)-\left(\frac{5}{4}(-1)^{4}-\frac{3}{2}(-1)^{2}+4(-1)\right) \\
& =\frac{399}{4}-\left(-\frac{17}{4}\right)=104
\end{aligned}
$$

c. $\int_{1}^{2}\left(\sqrt{y}+\frac{1}{y^{2}}\right) \mathrm{d} y$

$$
\begin{aligned}
\int_{1}^{2}\left(\sqrt{y}+\frac{1}{y^{2}}\right) \mathrm{d} y & =\int_{1}^{2} \mathrm{~d}\left(\frac{2}{3} \sqrt{y^{3}}-\frac{1}{y}\right)=\Delta_{1}^{2}\left(\frac{2}{3} \sqrt{y^{3}}-\frac{1}{y}\right) \\
& =\left(\frac{2}{3} \sqrt{(2)^{3}}-\frac{1}{(2)}\right)-\left(\frac{2}{3} \sqrt{(1)^{3}}-\frac{1}{(1)}\right) \\
& =\left(\frac{4}{3} \sqrt{2}-\frac{1}{2}\right)-\left(-\frac{1}{3}\right)=-\frac{1}{6}+\frac{4}{3} \sqrt{2} \approx 1.72
\end{aligned}
$$

d. $\int_{4}^{3}\left(2 x+\frac{2}{x}\right) \mathrm{d} x$

$$
\begin{aligned}
\int_{4}^{3}\left(2 x+\frac{2}{x}\right) \mathrm{d} x & =\int_{4}^{3} \mathrm{~d}\left(\frac{1}{2} x^{2}+\ln |x|\right)=\Delta_{4}^{3}\left(\frac{1}{2} x^{2}+\ln |x|\right) \\
& =\left(\frac{1}{2}(4)^{2}+\ln |4|\right)-\left(\frac{1}{2}(3)^{2}+\ln |3|\right)=12-\frac{15}{2}=\frac{9}{2}=4.5 .
\end{aligned}
$$

Due Problems

The following problems were due May 19 Thursday.
1 For each of the following expressions, find its antidifferentials (indefinite integrals). Show at least one intermediate step for each.
a. $\left(3 x^{2}+4 x\right) \mathrm{d} x$

$$
\left(3 x^{2}+4 x\right) \mathrm{d} x=\left(3 x^{2}+4 x^{1}\right) \mathrm{d} x=\mathrm{d}\left(\frac{3}{3} x^{3}+\frac{4}{2} x^{2}\right)=\mathrm{d}\left(x^{3}+2 x^{2}\right)
$$

so

$$
\int\left(3 x^{2}+4 x\right) \mathrm{d} x=x^{3}+2 x^{2}+C
$$

where C is an arbitrary constant.
b. $\left(\frac{3}{x^{2}}+\sqrt{x}+\frac{5}{x}\right) \mathrm{d} x$

$$
\begin{aligned}
\left(\frac{3}{x^{2}}+\sqrt{x}+\frac{5}{x}\right) \mathrm{d} x & =\left(3 x^{-2}+1 x^{1 / 2}+5 x^{-1}\right) \mathrm{d} x \\
& =\mathrm{d}\left(\frac{3}{-1} x^{-1}+\frac{1}{3 / 2} x^{3 / 2}+5 \ln |x|\right)=\mathrm{d}\left(-\frac{3}{x}+\frac{2 x \sqrt{x}}{3}+5 \ln |x|\right)
\end{aligned}
$$

so

$$
\int\left(\frac{3}{x^{2}}+\sqrt{x}+\frac{5}{x}\right) \mathrm{d} x=-\frac{3}{x}+\frac{2 x \sqrt{x}}{3}+5 \ln |x|+C
$$

where C is an arbitrary constant.
2 Evaluate each of the following definite integrals.
a. $\int_{5}^{6}\left(3 x^{2}+4 x\right) \mathrm{d} x$

$$
\int_{5}^{6}\left(3 x^{2}+4 x\right) \mathrm{d} x=\int_{5}^{6} \mathrm{~d}\left(x^{3}+2 x^{2}\right)=\Delta_{5}^{6}\left(x^{3}+2 x^{2}\right)=\left((6)^{3}+2(6)^{2}\right)-\left((5)^{3}+2(5)^{2}\right)=288-175=113
$$

b. $\int_{-3}^{-2}\left(\frac{3}{x^{2}}+\sqrt{x}+\frac{5}{x}\right) \mathrm{d} x$

$$
\begin{aligned}
\int_{-3}^{-2}\left(\frac{3}{x^{2}}+\sqrt{x}+\frac{5}{x}\right) \mathrm{d} x & =\int_{-3}^{-2} \mathrm{~d}\left(-\frac{3}{x}+\frac{2 x \sqrt{x}}{3}+5 \ln |x|\right)=\Delta_{-3}^{-2}\left(-\frac{3}{x}+\frac{2 x \sqrt{x}}{3}+5 \ln |x|\right) \\
& =\left(-\frac{3}{(-2)}+\frac{2(-2) \sqrt{-2}}{3}+5 \ln |-2|\right)-\left(-\frac{3}{(-3)}+\frac{2(-3) \sqrt{-3}}{3}+5 \ln |-3|\right) \\
& =\left(\frac{3}{2}-\frac{4 \sqrt{2} \mathrm{i}}{3}+5 \ln 2\right)-(1-2 \sqrt{3} \mathrm{i}+5 \ln 3) \\
& =\frac{1}{2}+5 \ln 2-5 \ln 3-\frac{4}{3} \sqrt{2} \mathrm{i}-2 \sqrt{3} \mathrm{i} \approx-1.527-1.578 \mathrm{i} .
\end{aligned}
$$

