Practice Problems

The first few problems are for practice; do as many of them as you need until they're easy, or make up more for yourself along the same lines.

1 Find the second derivative of y with respect to x :
a. $y=5 x^{3}-4 x^{2}+3 x$

Following problem (3.a) in Homework 4,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=15 x^{2}-8 x+3
$$

Therefore,

$$
\mathrm{d}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)=\mathrm{d}\left(15 x^{2}-8 x+3\right)=30 x \mathrm{~d} x-8 \mathrm{~d} x
$$

so

$$
\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{2} y=\frac{\mathrm{d}(\mathrm{~d} y / \mathrm{d} x)}{\mathrm{d} x}=30 x-8
$$

b. $y=\frac{12}{x+5}-10$

Following problem (3.b) in Homework 4,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{12}{(x+5)^{2}}
$$

Therefore,

$$
\mathrm{d}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)=\mathrm{d}\left(-\frac{12}{(x+5)^{2}}\right)=\frac{12 \mathrm{~d}\left((x+5)^{2}\right)}{\left((x+5)^{2}\right)^{2}}=\frac{24(x+5) \mathrm{d}(x+5)}{(x+5)^{4}}=\frac{24 \mathrm{~d} x}{(x+5)^{3}}
$$

so

$$
\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{2} y=\frac{\mathrm{d}(\mathrm{~d} y / \mathrm{d} x)}{\mathrm{d} x}=\frac{24}{(x+5)^{3}}
$$

c. $x^{2}+y^{2}=1$

Following problem (3.c) in Homework 4,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{x}{y} .
$$

Therefore,

$$
\mathrm{d}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)=\mathrm{d}\left(-\frac{x}{y}\right)=-\frac{y \mathrm{~d} x-x \mathrm{~d} y}{y^{2}}=\frac{x \mathrm{~d} y-y \mathrm{~d} x}{y^{2}}
$$

so

$$
\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{2} y=\frac{\mathrm{d}(\mathrm{~d} y / \mathrm{d} x)}{\mathrm{d} x}=\frac{x \mathrm{~d} y / \mathrm{d} x-y}{y^{2}}=\frac{x(-x / y)-y}{y^{2}}=\frac{-x^{2}-y^{2}}{y^{3}}=-\frac{x^{2}+y^{2}}{y^{3}} .
$$

d. $(x+y)^{2}=1$

Following problem (3.d) in Homework 4,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-1
$$

Therefore,

$$
\begin{gathered}
\mathrm{d}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)=\mathrm{d}(-1)=0 \\
\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{2} y=\frac{\mathrm{d}(\mathrm{~d} y / \mathrm{d} x)}{\mathrm{d} x}=0
\end{gathered}
$$

so

2 Find formulas for f^{\prime} and $f^{\prime \prime}$:
a. $f(x)=3 x^{3}$

I differentiate the formula for $f(x)$ and divide by $\mathrm{d} x$:

$$
\begin{aligned}
f(x) & =3 x^{3} \\
\mathrm{~d} f(x) & =\mathrm{d}\left(3 x^{3}\right)=9 x^{2} \mathrm{~d} x \\
f^{\prime}(x)=\frac{\mathrm{d} f(x)}{\mathrm{d} x} & =9 x^{2}
\end{aligned}
$$

To find $f^{\prime \prime}$, I do this again:

$$
\begin{aligned}
f^{\prime}(x) & =9 x^{2} \\
\mathrm{~d} f^{\prime}(x) & =\mathrm{d}\left(9 x^{2}\right)=18 x \mathrm{~d} x \\
f^{\prime \prime}(x)=\frac{\mathrm{d} f^{\prime}(x)}{\mathrm{d} x} & =18 x
\end{aligned}
$$

b. $f(t)=\sqrt{t-5}$

I differentiate the formula for $f(t)$ and divide by $\mathrm{d} t$:

$$
\begin{aligned}
f(t) & =\sqrt{t-5} ; \\
\mathrm{d} f(t) & =\mathrm{d}(\sqrt{t-5})=\frac{\sqrt{t-5} \mathrm{~d}(t-5)}{2(t-5)}=\frac{\sqrt{t-5} \mathrm{~d} t}{2 t-10} ; \\
f^{\prime}(t)=\frac{\mathrm{d} f(t)}{\mathrm{d} t} & =\frac{\sqrt{t-5}}{2 t-10} .
\end{aligned}
$$

To find $f^{\prime \prime}$, I do this again:

$$
\begin{aligned}
f^{\prime}(t) & =\frac{\sqrt{t-5}}{2 t-10} ; \\
\mathrm{d} f^{\prime}(t) & =\mathrm{d}\left(\frac{\sqrt{t-5}}{2 t-10}\right)=\frac{(2 t-10) \mathrm{d}(\sqrt{t-5})-\sqrt{t-5} \mathrm{~d}(2 t-10)}{(2 t-10)^{2}} \\
& =\frac{\sqrt{t-5} \mathrm{~d} t-2 \sqrt{t-5} \mathrm{~d} t}{(2 t-10)^{2}}=-\frac{\sqrt{t-5} \mathrm{~d} t}{(2 t-10)^{2}} \\
f^{\prime \prime}(t)=\frac{\mathrm{d} f^{\prime}(t)}{\mathrm{d} t} & =-\frac{\sqrt{t-5}}{(2 t-10)^{2}}
\end{aligned}
$$

c. $f(x)=\frac{x^{2}}{x-1}$

I differentiate the formula for $f(x)$ and divide by $\mathrm{d} x$:

$$
\begin{aligned}
f(x) & =\frac{x^{2}}{x-1} ; \\
\mathrm{d} f(x) & =\mathrm{d}\left(\frac{x^{2}}{x-1}\right)=\frac{(x-1) \mathrm{d}\left(x^{2}\right)-x^{2} \mathrm{~d}(x-1)}{(x-1)^{2}}=\frac{2 x(x-1) \mathrm{d} x-x^{2} \mathrm{~d} x}{(x-1)^{2}} ; \\
f^{\prime}(x)=\frac{\mathrm{d} f(x)}{\mathrm{d} x} & =\frac{2 x(x-1)-x^{2}}{(x-1)^{2}}=\frac{2 x^{2}-2 x-x^{2}}{(x-1)^{2}}=\frac{x^{2}-2 x}{(x-1)^{2}} .
\end{aligned}
$$

To find $f^{\prime \prime}$, I do this again:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{x^{2}-2 x}{(x-1)^{2}} ; \\
\mathrm{d} f^{\prime}(x) & =\mathrm{d}\left(\frac{x^{2}-2 x}{(x-1)^{2}}\right)=\frac{(x-1)^{2} \mathrm{~d}\left(x^{2}-2 x\right)-\left(x^{2}-2 x\right) \mathrm{d}\left((x-1)^{2}\right)}{\left((x-1)^{2}\right)^{2}} \\
& =\frac{(x-1)^{2}(2 x \mathrm{~d} x-2 \mathrm{~d} x)-2\left(x^{2}-2 x\right)(x-1) \mathrm{d} x}{(x-1)^{4}} ; \\
f^{\prime \prime}(x)=\frac{\mathrm{d} f^{\prime}(x)}{\mathrm{d} x} & =\frac{(x-1)^{2}(2 x-2)-2\left(x^{2}-2 x\right)(x-1)}{(x-1)^{4}} .
\end{aligned}
$$

(This could be simplified further, if you wish.)
d. $f(p)=5-p^{2}$

I differentiate the formula for $f(p)$ and divide by $\mathrm{d} p$:

$$
\begin{aligned}
f(p) & =5-p^{2} ; \\
\mathrm{d} f(p) & =\mathrm{d}\left(5-p^{2}\right)=-2 p \mathrm{~d} p ; \\
f^{\prime}(p)=\frac{\mathrm{d} f(p)}{\mathrm{d} p} & =-2 p .
\end{aligned}
$$

To find $f^{\prime \prime}$, I do this again:

$$
\begin{aligned}
f^{\prime}(p) & =-2 p ; \\
\mathrm{d} f^{\prime}(x) & =\mathrm{d}(-2 p)=-2 \mathrm{~d} p ; \\
f^{\prime \prime}(x)=\frac{\mathrm{d} f^{\prime}(x)}{\mathrm{d} x} & =-2 .
\end{aligned}
$$

Due Problems

The following problems were due April 26 Tuesday.
1 Given that $y=3 x^{4}-5 x^{2}$ always, find the first and second derivatives of y with respect to x. (Show at least one intermediate step for each.)

$$
\begin{aligned}
y & =3 x^{4}-5 x^{2} \\
\mathrm{~d} y & =12 x^{3} \mathrm{~d} x-10 x \mathrm{~d} x \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =12 x^{3}-10 x \\
\mathrm{~d}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right) & =36 x^{2} \mathrm{~d} x-10 \mathrm{~d} x \\
\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{2} y & =36 x^{2}-10
\end{aligned}
$$

2 Given that $f(x)=\sqrt{x}+1 / x$ always, find the first and second derivatives of the function f. (Show at least one intermediate step for each.)

$$
\begin{aligned}
f(x) & =\sqrt{x}+\frac{1}{x} \\
\mathrm{~d} f(x) & =\frac{\sqrt{x} \mathrm{~d} x}{2 x}-\frac{1 \mathrm{~d} x}{x^{2}} ; \\
f^{\prime}(x) & =\frac{\sqrt{x}}{2 x}-\frac{1}{x^{2}} ; \\
\mathrm{d} f^{\prime}(x) & =\frac{2 x \mathrm{~d}(\sqrt{x})-\sqrt{x} \mathrm{~d}(2 x)}{(2 x)^{2}}+\frac{1 \mathrm{~d}\left(x^{2}\right)}{\left(x^{2}\right)^{2}}=\frac{\sqrt{x} \mathrm{~d} x-2 \sqrt{x} \mathrm{~d} x}{4 x^{2}}+\frac{2 x \mathrm{~d} x}{x^{4}}=-\frac{\sqrt{x} \mathrm{~d} x}{4 x^{2}}+\frac{2 \mathrm{~d} x}{x^{3}} ; \\
f^{\prime \prime}(x) & =-\frac{\sqrt{x}}{4 x^{2}}+\frac{2}{x^{3}}
\end{aligned}
$$

(You didn't really have to simplify the formula for $f^{\prime \prime}$ this much.)
3 Extra credit. In Physics classes, one learns the formula

$$
h=a+v t-\frac{1}{2} g t^{2}
$$

for the height h of a projectile that is released at a height a with upward velocity v, where t is the amount of time after the projectile is released and g is the local downward acceleration of gravity. (Note that a, v, and g are constants.) Verify that this formula is correct (showing in each case what calculation you must make to verify this), as follows:
a. At the time at which the projectile is released $(t=0)$, check that the height really is a.

When $t=0$,

$$
h=a+v t-\frac{1}{2} g t^{2}=a+v(0)-\frac{1}{2} g(0)^{2}=a,
$$

so the initial height really is a.
b. At the time at which the projectile is released, check that the upward speed really is v. (Hint: Upward speed is the derivative of height with respect to time.)
First,

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d}\left(a+v t-\frac{1}{2} g t^{2}\right)}{\mathrm{d} t}=\frac{0+v \mathrm{~d} t-\frac{1}{2} g(2 t \mathrm{~d} t)}{\mathrm{d} t}=v-g t .
$$

When $t=0$,

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=v-g(0)=v
$$

so the initial upward velocity really is v.
c. At all times, check that the downward acceleration of the particle really is g. (Hint: Upward acceleration is the second derivative of height with respect to time, and downward acceleration is simply the opposite of upward acceleration.)
so

$$
\begin{gathered}
\left(\frac{\mathrm{d}}{\mathrm{~d} t}\right)^{2} h=\frac{\mathrm{d}(v-g t)}{\mathrm{d} t}=\frac{0-g \mathrm{~d} t}{\mathrm{~d} t}=-g \\
-\left(\frac{\mathrm{d}}{\mathrm{~d} t}\right)^{2} h=g
\end{gathered}
$$

that is, the downard acceleration is always g.
Page 4 of 4

