Practice Problems

These problems are not to be handed in, but try them first.

- From Chapter 1 Review (pages 40-42): 1-4, 11-13, 28\&29, 36\&37;
- From Chapter 2 Review (pages 120-124): 5-9, 13-16 (use a calculator), 17, 47-50, 88.A\&B, 90.A\&B. The answers to these should be in the back of your textbook.

Due Problems

These problems are due October 9 Tuesday.
1 Solve the equation

$$
S=2 A+p h
$$

for h. (Show at least one intermediate step.)

$$
\begin{aligned}
S & =2 A+p h ; \\
S-2 A & =p h ; \\
h & =\frac{S-2 A}{p} .
\end{aligned}
$$

2 Given that

$$
f(x)=2 x+3
$$

for all x, find $f(3)-f(-1)$. (Show at least one intermediate step.)

$$
f(3)-f(-1)=(2(3)+3)-(2(-1)+3)=8
$$

Or

$$
\begin{aligned}
f(3) & =2(3)+3=9 ; \\
f(-1) & =2(-1)+3=1 ; \\
f(3)-f(-1) & =(9)-(1)=8 .
\end{aligned}
$$

3 A 30-foot ladder is leaning diagonally against the side of a building. (The walls of the building are vertical, and the ground is horizontal.) Let x be the distance along the ground from the base of the ladder to the building, and let y be the height above the ground at which the ladder reaches the building, both in feet.
a. Write down an equation relating x and y in this situation.

Using the Pythagorean Theorem,

$$
x^{2}+y^{2}=30^{2}
$$

or

$$
x^{2}+y^{2}=900
$$

b. What are the largest and smallest values that x and y can possibly take?

Since x and y are lengths, we need $x \geq 0$ and $y \geq 0$. Since $x \geq 0$,

$$
\begin{aligned}
x^{2}+y^{2} & =900 \\
(0)^{2}+y^{2} & \leq 900 ; \\
y^{2} & \leq 900 ; \\
y & \leq 30
\end{aligned}
$$

Similarly, since $y \geq 0, x \leq 30$. Therefore,

$$
\begin{aligned}
& 0 \leq x \leq 30 \\
& 0 \leq y \leq 30
\end{aligned}
$$

