Practice Problems

These problems are not to be handed in, but try them first; do as many of them as you need until they're easy, or make up more along the same lines if you need more practice.

1 Find the second derivative of y with respect to x :
a. $y=5 x^{3}-4 x^{2}+3 x$

Following problem (3.a) in Homework 4,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=15 x^{2}-8 x+3
$$

Therefore,

$$
\mathrm{d}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)=\mathrm{d}\left(15 x^{2}-8 x+3\right)=30 x \mathrm{~d} x-8 \mathrm{~d} x
$$

so

$$
\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{2} y=\frac{\mathrm{d}(\mathrm{~d} y / \mathrm{d} x)}{\mathrm{d} x}=30 x-8
$$

b. $y=\frac{12}{x+5}-10$

Following problem (3.b) in Homework 4,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{12}{(x+5)^{2}}=-12(x+5)^{-2}
$$

Therefore,

$$
\mathrm{d}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)=\mathrm{d}\left(-12(x+5)^{-2}\right)=-12\left(-2(x+5)^{-3} \mathrm{~d}(x+5)\right)=\frac{24 \mathrm{~d} x}{(x+5)^{3}}
$$

so

$$
\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{2} y=\frac{\mathrm{d}(\mathrm{~d} y / \mathrm{d} x)}{\mathrm{d} x}=\frac{24}{(x+5)^{3}}
$$

c. $x^{2}+y^{2}=1$

Following problem (3.c) in Homework 4,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{x}{y} .
$$

Therefore,

$$
\mathrm{d}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)=\mathrm{d}\left(-\frac{x}{y}\right)=-\frac{y \mathrm{~d} x-x \mathrm{~d} y}{y^{2}}=\frac{x \mathrm{~d} y-y \mathrm{~d} x}{y^{2}}
$$

so

$$
\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{2} y=\frac{\mathrm{d}(\mathrm{~d} y / \mathrm{d} x)}{\mathrm{d} x}=\frac{x \mathrm{~d} y / \mathrm{d} x-y}{y^{2}}=\frac{x(-x / y)-y}{y^{2}}=\frac{-x^{2}-y^{2}}{y^{3}}=-\frac{x^{2}+y^{2}}{y^{3}}
$$

d. $(x+y)^{2}=1$

Following problem (3.d) in Homework 4,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-1
$$

Therefore,
so

$$
\begin{gathered}
\mathrm{d}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)=\mathrm{d}(-1)=0 \\
\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{2} y=\frac{\mathrm{d}(\mathrm{~d} y / \mathrm{d} x)}{\mathrm{d} x}=0
\end{gathered}
$$

2 Find formulas for f^{\prime} and $f^{\prime \prime}$:
a. $f(x)=3 x^{3}$

I differentiate the formula for $f(x)$ and divide by $\mathrm{d} x$:

$$
\begin{aligned}
f(x) & =3 x^{3} \\
\mathrm{~d} f(x) & =\mathrm{d}\left(3 x^{3}\right)=9 x^{2} \mathrm{~d} x \\
f^{\prime}(x)=\frac{\mathrm{d} f(x)}{\mathrm{d} x} & =9 x^{2}
\end{aligned}
$$

To find $f^{\prime \prime}$, I do this again:

$$
\begin{aligned}
f^{\prime}(x) & =9 x^{2} \\
\mathrm{~d} f^{\prime}(x) & =\mathrm{d}\left(9 x^{2}\right)=18 x \mathrm{~d} x \\
f^{\prime \prime}(x)=\frac{\mathrm{d} f^{\prime}(x)}{\mathrm{d} x} & =18 x
\end{aligned}
$$

b. $f(t)=\sqrt{t-5}$

I differentiate the formula for $f(t)$ and divide by $\mathrm{d} t$:

$$
\begin{aligned}
f(t) & =\sqrt{t-5} ; \\
\mathrm{d} f(t) & =\mathrm{d}(\sqrt{t-5})=\frac{\sqrt{t-5} \mathrm{~d}(t-5)}{2(t-5)}=\frac{\sqrt{t-5} \mathrm{~d} t}{2 t-10} ; \\
f^{\prime}(t)=\frac{\mathrm{d} f(t)}{\mathrm{d} t} & =\frac{\sqrt{t-5}}{2 t-10} .
\end{aligned}
$$

To find $f^{\prime \prime}$, I do this again:

$$
\begin{aligned}
f^{\prime}(t) & =\frac{\sqrt{t-5}}{2 t-10} \\
\mathrm{~d} f^{\prime}(t) & =\mathrm{d}\left(\frac{\sqrt{t-5}}{2 t-10}\right)=\frac{(2 t-10) \mathrm{d}(\sqrt{t-5})-\sqrt{t-5} \mathrm{~d}(2 t-10)}{(2 t-10)^{2}} \\
& =\frac{\sqrt{t-5} \mathrm{~d} t-2 \sqrt{t-5} \mathrm{~d} t}{(2 t-10)^{2}}=-\frac{\sqrt{t-5} \mathrm{~d} t}{(2 t-10)^{2}} \\
f^{\prime \prime}(t)=\frac{\mathrm{d} f^{\prime}(t)}{\mathrm{d} t} & =-\frac{\sqrt{t-5}}{(2 t-10)^{2}}
\end{aligned}
$$

c. $f(x)=\frac{x^{2}}{x-1}$

I differentiate the formula for $f(x)$ and divide by $\mathrm{d} x$:

$$
\begin{aligned}
f(x) & =\frac{x^{2}}{x-1} ; \\
\mathrm{d} f(x) & =\mathrm{d}\left(\frac{x^{2}}{x-1}\right)=\frac{(x-1) \mathrm{d}\left(x^{2}\right)-x^{2} \mathrm{~d}(x-1)}{(x-1)^{2}}=\frac{2 x(x-1) \mathrm{d} x-x^{2} \mathrm{~d} x}{(x-1)^{2}} ; \\
f^{\prime}(x)=\frac{\mathrm{d} f(x)}{\mathrm{d} x} & =\frac{2 x(x-1)-x^{2}}{(x-1)^{2}}=\frac{2 x^{2}-2 x-x^{2}}{(x-1)^{2}}=\frac{x^{2}-2 x}{(x-1)^{2}} .
\end{aligned}
$$

To find $f^{\prime \prime}$, I do this again:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{x^{2}-2 x}{(x-1)^{2}}=\left(x^{2}-2 x\right)(x-1)^{-2} \\
\mathrm{~d} f^{\prime}(x) & =\mathrm{d}\left(\left(x^{2}-2 x\right)(x-1)^{-2}\right) \\
& =(x-1)^{-2} \mathrm{~d}\left(x^{2}-2 x\right)+\left(x^{2}-2 x\right) \mathrm{d}\left((x-1)^{-2}\right) \\
& =(x-1)^{-2}(2 x \mathrm{~d} x-2 \mathrm{~d} x)-2\left(x^{2}-2 x\right)(x-1)^{-3} \mathrm{~d} x \\
& =\frac{2 x \mathrm{~d} x-2 \mathrm{~d} x}{(x-1)^{2}}-\frac{2\left(x^{2}-2 x\right) \mathrm{d} x}{(x-1)^{3}} ; \\
f^{\prime \prime}(x)=\frac{\mathrm{d} f^{\prime}(x)}{\mathrm{d} x} & =\frac{2 x-2}{(x-1)^{2}}-\frac{2\left(x^{2}-2 x\right)}{(x-1)^{3}}
\end{aligned}
$$

(This could be simplified further, if you wish.)
d. $f(p)=5-p^{2}$

I differentiate the formula for $f(p)$ and divide by $\mathrm{d} p$:

$$
\begin{aligned}
f(p) & =5-p^{2} \\
\mathrm{~d} f(p) & =\mathrm{d}\left(5-p^{2}\right)=-2 p \mathrm{~d} p \\
f^{\prime}(p)=\frac{\mathrm{d} f(p)}{\mathrm{d} p} & =-2 p
\end{aligned}
$$

To find $f^{\prime \prime}$, I do this again:

$$
\begin{aligned}
f^{\prime}(p) & =-2 p \\
\mathrm{~d} f^{\prime}(p) & =\mathrm{d}(-2 p)=-2 \mathrm{~d} p \\
f^{\prime \prime}(p)=\frac{\mathrm{d} f^{\prime}(p)}{\mathrm{d} p} & =-2
\end{aligned}
$$

Due Problems

These problems are due October 18 Thursday.
1 Given that

$$
y=7 x^{4}-12 x^{3}
$$

always, find the first and second derivatives of y with respect to x. (Show at least one intermediate step for each.)
To find the first derivative, I differentiate the equation and divide by $\mathrm{d} x$:

$$
\begin{aligned}
\mathrm{d} y & =\mathrm{d}\left(7 x^{4}-12 x^{3}\right) \\
& =7\left(4 x^{3} \mathrm{~d} x\right)-12\left(3 x^{2} \mathrm{~d} x\right) \\
\frac{\mathrm{d} y}{\mathrm{~d} x} & =28 x^{3}-36 x^{2}
\end{aligned}
$$

To find the second derivative, I repeat the process:

$$
\begin{aligned}
\mathrm{d}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right) & =\mathrm{d}\left(28 x^{3}-36 x^{2}\right) \\
& =28\left(3 x^{2} \mathrm{~d} x\right)-36(2 x \mathrm{~d} x) \\
\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{2} y=\frac{\mathrm{d}(\mathrm{~d} y / \mathrm{d} x)}{\mathrm{d} x} & =84 x^{2}-72 x
\end{aligned}
$$

2 Given that

$$
f(t)=\sqrt[3]{t}-\frac{5}{t}
$$

always, find the first and second derivatives of the function f. (Show at least one intermediate step for each.)
To find the first derivative, I differentiate the formula and divide by $\mathrm{d} t$:

$$
\begin{aligned}
\mathrm{d} f(t) & =\mathrm{d}\left(\sqrt[3]{t}-\frac{5}{t}\right) \\
& =\frac{\sqrt[3]{t} \mathrm{~d} t}{3 t}-\left(-\frac{5 \mathrm{~d} t}{t^{2}}\right) \\
f^{\prime}(t)=\frac{\mathrm{d} f(t)}{\mathrm{d} t} & =\frac{\sqrt[3]{t}}{3 t}+\frac{5}{t^{2}}
\end{aligned}
$$

To find the second derivative, I repeat the process:

$$
\begin{aligned}
\mathrm{d} f^{\prime}(t) & =\mathrm{d}\left(\frac{\sqrt[3]{t}}{3 t}+\frac{5}{t^{2}}\right)=\mathrm{d}\left(\frac{1}{3} t^{-2 / 3}+5 t^{-2}\right) \\
& =\frac{1}{3}\left(-\frac{2}{3} t^{-5 / 3} \mathrm{~d} t\right)+5\left(-2 t^{-3} \mathrm{~d} t\right) ; \\
f^{\prime \prime}(t)=\frac{\mathrm{d} f^{\prime}(t)}{\mathrm{d} t} & =-\frac{2}{9} t^{-5 / 3}-10 t^{-3}=-\frac{2 \sqrt[3]{t}}{9 t^{2}}-\frac{10}{t^{3}} .
\end{aligned}
$$

3 Extra credit: In Physics classes, one learns the formula

$$
y=a+b t-\frac{1}{2} g t^{2}
$$

for the height y of a projectile that is released at a height a with upward velocity b, where t is the amount of time after the projectile is released and g is the local downward acceleration of gravity. (Note that a, b, and g are constant in this situation.) Verify that this formula is correct (showing in each case what calculation you must make to verify this), as follows:
a. At the time at which the projectile is released, check that the height really is a. (Hint: $t=0$ when the projectile is released.)
When $t=0$,

$$
y=a+b(0)-\frac{1}{2} g(0)^{2}=a
$$

as claimed.
b. At the time at which the projectile is released, check that the upward velocity really is b. (Hint: Upward velocity is the derivative of height with respect to time.)
At all times,

$$
\begin{aligned}
\mathrm{d} y & =\mathrm{d}\left(a+b t-\frac{1}{2} g t^{2}\right) \\
& =0+b \mathrm{~d} t-\frac{1}{2} g(2 t \mathrm{~d} t) \\
\frac{\mathrm{d} y}{\mathrm{~d} t} & =b-g t
\end{aligned}
$$

At $t=0$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=b-g(0)=b
$$

as claimed.
Page 4 of 5
c. At all times, check that the downward acceleration of the particle really is g. (Hint: Upward acceleration is the second derivative of height with respect to time, and downward acceleration is simply the opposite of upward acceleration.)
At all times,

$$
\begin{aligned}
\mathrm{d}\left(\frac{\mathrm{~d} y}{\mathrm{~d} t}\right) & =\mathrm{d}(b-g t) \\
& =0-g \mathrm{~d} t \\
\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right)^{2} y=\frac{\mathrm{d}(\mathrm{~d} y / \mathrm{d} t)}{\mathrm{d} t} & =-g .
\end{aligned}
$$

Therefore,

$$
-\left(\frac{\mathrm{d}}{\mathrm{~d} t}\right)^{2} y=-(-g)=g
$$

as claimed.

