Practice Problems

These problems are not to be handed in, but try them first; also try the even problems if you need more practice.

1 Differentiate (find the differential of) the following expressions:
a. $3 x^{2}+5 x-4$
b. $3 \sqrt{x}-5 / x$
c. $3 p q^{2}-2 p^{2} q$
d. $\frac{x-a}{x+a}$ if a is a constant

2 Differentiate the following equations:
a. $y=5 x^{3}-4 x^{2}+3 x$
b. $y=\frac{12}{x+5}-10$
c. $x^{2}+y^{2}=1$
d. $(x+y)^{2}=1$

3 Find the derivative (sensitivity) of y with respect to x :
a. $y=5 x^{3}-4 x^{2}+3 x$
b. $y=\frac{12}{x+5}-10$
c. $x^{2}+y^{2}=1$
d. $(x+y)^{2}=1$

Due Problems

These problems are due April 12 Thursday.
1 Differentiate (find the differential of)

$$
3 x^{6}-4 / x+\sqrt[3]{5 x}
$$

(Show at least one intermediate step.)
2 Suppose that

$$
y=\frac{3 x}{y-2} .
$$

Differentiate this equation. (Show at least one intermediate step.)

3 Suppose that

$$
y=2 x^{4}-\frac{4}{x^{3}}
$$

always. Find the derivative (sensitivity) of y with respect to x. (Show at least one intermediate step.)

Answers to Practice Problems

Here are the answers to the Practice Problems from the beginning of the assignment.
1
a.

$$
\begin{aligned}
\mathrm{d}\left(3 x^{2}+5 x-4\right) & =\mathrm{d}\left(3 x^{2}\right)+\mathrm{d}(5 x)-\mathrm{d}(4)=3 \mathrm{~d}\left(x^{2}\right)+5 \mathrm{~d} x-0 \\
& =3(2 x \mathrm{~d} x)+5 \mathrm{~d} x=6 x \mathrm{~d} x+5 \mathrm{~d} x=(6 x+5) \mathrm{d} x .
\end{aligned}
$$

b.

$$
\mathrm{d}(3 \sqrt{x}-5 / x)=3 \mathrm{~d}(\sqrt{x})-\mathrm{d}(5 / x)=3 \frac{\sqrt{x} \mathrm{~d} x}{2 x}-\left(-\frac{5 \mathrm{~d} x}{x^{2}}\right)=\left(\frac{3 \sqrt{x}}{2 x}+\frac{5}{x^{2}}\right) \mathrm{d} x
$$

c.

$$
\begin{aligned}
\mathrm{d}\left(3 p q^{2}-2 p^{2} q\right) & =3 \mathrm{~d}\left(p q^{2}\right)-2 \mathrm{~d}\left(p^{2} q\right)=3\left(q^{2} \mathrm{~d} p+p \mathrm{~d}\left(q^{2}\right)\right)-2\left(q \mathrm{~d}\left(p^{2}\right)+p^{2} \mathrm{~d} q\right) \\
& =3\left(q^{2} \mathrm{~d} p+2 p q \mathrm{~d} q\right)-2\left(2 p q \mathrm{~d} p+p^{2} \mathrm{~d} q\right) \\
& =\left(3 q^{2}-4 p q\right) \mathrm{d} p+\left(6 p q-2 p^{2}\right) \mathrm{d} q
\end{aligned}
$$

d.

$$
\begin{aligned}
\mathrm{d}\left(\frac{x-a}{x+a}\right) & =\frac{(x+a) \mathrm{d}(x-a)-(x-a) \mathrm{d}(x+a)}{(x+a)^{2}}=\frac{(x+a) \mathrm{d} x-(x-a) \mathrm{d} x}{(x+a)^{2}} \\
& =\frac{x \mathrm{~d} x+a \mathrm{~d} x-x \mathrm{~d} x+a \mathrm{~d} x}{(x+a)^{2}}=\frac{2 a \mathrm{~d} x}{(x+a)^{2}} .
\end{aligned}
$$

2
a.

$$
\begin{aligned}
\mathrm{d} y & =\mathrm{d}\left(5 x^{3}-4 x^{2}+3 x\right) \\
& =5 \mathrm{~d}\left(x^{3}\right)-4 \mathrm{~d}\left(x^{2}\right)+3 \mathrm{~d} x \\
& =5\left(3 x^{2} \mathrm{~d} x\right)-4(2 x \mathrm{~d} x)+3 \mathrm{~d} x \\
\mathrm{~d} y & =\left(15 x^{2}-8 x+3\right) \mathrm{d} x
\end{aligned}
$$

b.

$$
\begin{aligned}
\mathrm{d} y & =\mathrm{d}\left(\frac{12}{x+5}-10\right) \\
& =-\frac{12 \mathrm{~d}(x+5)}{(x+5)^{2}}-0 \\
\mathrm{~d} y & =-\frac{12 \mathrm{~d} x}{(x+5)^{2}} .
\end{aligned}
$$

Page 2 of 3
c.

$$
\begin{aligned}
\mathrm{d}\left(x^{2}+y^{2}\right) & =\mathrm{d}(1) ; \\
\mathrm{d}\left(x^{2}\right)+\mathrm{d}\left(y^{2}\right) & =0 ; \\
2 x \mathrm{~d} x+2 y \mathrm{~d} y & =0 .
\end{aligned}
$$

d.

$$
\begin{aligned}
\mathrm{d}\left((x+y)^{2}\right) & =\mathrm{d}(1) ; \\
2(x+y) \mathrm{d}(x+y) & =0 ; \\
(2 x+2 y)(\mathrm{d} x+\mathrm{d} y) & =0 \\
(2 x+2 y) \mathrm{d} x+(2 x+2 y) \mathrm{d} y & =0
\end{aligned}
$$

3
a. Following problem (2.a),

$$
\mathrm{d} y=\left(15 x^{2}-8 x+3\right) \mathrm{d} x
$$

Therefore,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=15 x^{2}-8 x+3
$$

b. Following problem (2.b),

$$
\mathrm{d} y=-\frac{12 \mathrm{~d} x}{(x+5)^{2}}
$$

Therefore,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{12}{(x+5)^{2}}
$$

c. Following problem (2.c),

$$
2 x \mathrm{~d} x+2 y \mathrm{~d} y=0
$$

Therefore,

$$
\begin{aligned}
2 y \mathrm{~d} y & =-2 x \mathrm{~d} x \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =-\frac{2 x}{2 y} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =-\frac{x}{y} .
\end{aligned}
$$

d. Following problem (2.d),

$$
(2 x+2 y) \mathrm{d} x+(2 x+2 y) \mathrm{d} y=0
$$

Therefore,

$$
\begin{aligned}
(2 x+2 y) \mathrm{d} y & =-(2 x+2 y) \mathrm{d} x \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =-\frac{2 x+2 y}{2 x+2 y} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =-1
\end{aligned}
$$

