2.88. A Here is the graph of the cost function:

3.3.41 First,

$$
\frac{x^{2}+5 x}{x-3}=0
$$

exactly when $x^{2}+5 x=0$, in other words when x is 0 or -5 . Next, the expression is undefined exactly when $x-3=0$, in other words, when x is 3 .

When $x<-5$ (say when $x=-6$), the statement is false. When $-5<x<0$ (say when $x=-1$), the statement is true. When $0<x<3$ (say when $x=1$), the statement is false. Finally, when $x>3$ (say when $x=4$), the statement is true.

Therefore,

$$
-5<x<0 \text { or } x>3
$$

In other words, x belongs to the set

$$
(-5,0) \cup(3, \infty)
$$

3.3.81

a When $S(x)= \begin{cases}5+0.63 x & \text { for } x \leq 50, \\ 5+0.63(50)+0.45 x & \text { for } x>50 .\end{cases}$
c This function s is continuous, because the two pieces join together.
It's not smooth, however, because the pieces join in a corner.

