1 First, since x is the only variable around, $\Delta_{1}^{2}\left(5-x^{2}\right)$ must mean $\Delta_{x=1}^{x=2}\left(5-x^{2}\right)$. Then,

$$
\Delta_{x=1}^{x=2}\left(5-x^{2}\right)=\left(5-(2)^{2}\right)-\left(5-(1)^{2}\right)=1-4=-3 .
$$

5 First,

$$
R(1000)=60(1000)-0.025(1000)^{2}=35000
$$

and

$$
R(1050)=60(1050)-0.025(1050)^{2}=35437.5
$$

so

$$
\Delta_{1000}^{1050} R(x)=35437.5-35000=437.5
$$

Therefore, the change in revenue is

$$
\$ 437.50 .
$$

19 By the Sum Rule,

$$
\mathrm{d}\left(2 x^{3}+1\right)=\mathrm{d}\left(2 x^{3}\right)+\mathrm{d}(1) ;
$$

by the Constant Rule, $\mathrm{d}(1)=0$, so

$$
\mathrm{d}\left(2 x^{3}+1\right)=\mathrm{d}\left(2 x^{3}\right)
$$

which you could do directly with a combined rule. By the Product Rule,

$$
\mathrm{d}\left(2 x^{3}\right)=\left(x^{3}\right) \mathrm{d}(2)+2 \mathrm{~d}\left(x^{3}\right) ;
$$

by the Constant Rule, $\mathrm{d}(2)=0$, so

$$
\mathrm{d}\left(2 x^{3}\right)=2 \mathrm{~d}\left(x^{3}\right)
$$

which you could do directly with a combined rule. By the Power Rule,

$$
\mathrm{d}\left(x^{3}\right)=3 x^{3-1} \mathrm{~d} x
$$

since $3-1=2$,

$$
\mathrm{d}\left(x^{3}\right)=3 x^{2} \mathrm{~d} x
$$

which you could do directly. Since $2 \cdot 3=6$, therefore,

$$
\mathrm{d}\left(2 x^{3}+1\right)=\mathrm{d}\left(2 x^{3}\right)=2 \mathrm{~d}\left(x^{3}\right)=6 x^{2} \mathrm{~d} x .
$$

