3.1.29 If this works,

$$
\lim _{x \rightarrow 1} \sqrt{5 x+4}=\sqrt{5(1)+4}=3
$$

It works!
3.1.53. A If this works,

$$
\lim _{x \rightarrow-2} \frac{x^{2}-x-6}{x+2}=\frac{(-2)^{2}-(-2)-6}{(-2)+2}=\frac{0}{0}
$$

It doesn't work!
Since I got 0 on both sides of a fraction, I'll try to factor out $x-(-2)=x+2$ from both sides first. So if this works,

$$
\lim _{x \rightarrow-2} \frac{x^{2}-x-6}{x+2}=\lim _{x \rightarrow-2} \frac{(x+2)(x-3)}{x+2}=\lim _{x \rightarrow-2}(x-3)=(-2)-3=-5 .
$$

Now it works!
3.2.11. C If this works,

$$
\lim _{x \rightarrow 4} \frac{2 x-4}{(x-4)^{2}}=\frac{2(4)-4}{((4)-4)^{2}}=\frac{4}{0}
$$

This doesn't quite work, but I may be able to get some kind of infinite limit.
As we approach the limit, $x \approx 4$ but $x \neq 4$:

$$
\begin{array}{r}
x \neq 4 \\
x-4 \neq 0 \\
(x-4)^{2}>0
\end{array}
$$

Therefore,

$$
\lim _{x \rightarrow 4} \frac{2 x-4}{(x-4)^{2}}=\frac{4}{0^{+}}=\infty
$$

