5.3.9 If this works,

$$
\lim _{x \rightarrow \infty} \frac{2 x^{2}+7}{5 x^{3}+9}=\frac{2(\infty)^{2}+7}{5(\infty)^{3}+9}=\frac{2(\infty)+7}{5(\infty)+9}=\frac{(\infty)+7}{(\infty)+9}=\frac{\infty}{\infty}
$$

This doesn't quite work, but L'Hôpital's Rule applies:

$$
\lim _{x \rightarrow \infty} \frac{2 x^{2}+7}{5 x^{3}+9}=\lim _{x \rightarrow \infty} \frac{\mathrm{~d}\left(2 x^{2}+7\right)}{\mathrm{d}\left(5 x^{3}+9\right)}=\lim _{x \rightarrow \infty} \frac{4 x \mathrm{~d} x}{15 x^{2} \mathrm{~d} x}=\lim _{x \rightarrow \infty} \frac{4}{15 x}=\frac{4}{15(\infty)}=\frac{4}{\infty}=0 .
$$

5.3.31 If this works,

$$
\lim _{x \rightarrow-2} \frac{x^{2}+2 x+1}{x^{2}+x+1}=\frac{(-2)^{2}+2(-2)+1}{(-2)^{2}+(-2)+1}=\frac{1}{3} .
$$

This works; L'Hôpital's Rule is neither applicable nor necessary.

