1 Given

$$
y=\sqrt{3 x^{2}+4}
$$

find the derivative of y with respect to x.
$a \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\sqrt{3 x^{2}+4}}{2}=\frac{1}{2}\left(3 x^{2}+4\right)^{1 / 2}$
$b \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x \sqrt{3 x^{2}+4}=3 x\left(3 x^{2}+4\right)^{1 / 2}$
$c \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{3 x \sqrt{3 x^{2}+4}}{3 x^{2}+4}=3 x\left(3 x^{2}+4\right)^{-1 / 2}$
$d \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\sqrt{3 x^{2}+4}}{2\left(3 x^{2}+4\right)}=\frac{1}{2}\left(3 x^{2}+4\right)^{-1 / 2}$
2 Given

$$
3 x+4 y=x^{2}+y^{3},
$$

find the derivative of y with respect to x.
$a \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{2 x-3}{3 y^{2}-4}$
$b \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{3 y^{2}+2 x}{7}$
$c \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{3 y^{2}+2 x-3}{4}$
$d \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{2 x-3}{3 y-4}$
3 Given

$$
x=t \mathrm{e}^{2 t}
$$

find the derivative of x with respect to t.
a $2 \mathrm{e}^{2 t}$
$b \mathrm{e}^{2 t}+t \mathrm{e}^{2 t}=(t+1) \mathrm{e}^{2 t}$
c $2 t \mathrm{e}^{2 t}$
$d \mathrm{e}^{2 t}+2 t \mathrm{e}^{2 t}=(2 t+1) \mathrm{e}^{2 t}$
4 Given

$$
f(x)=\frac{x+1}{x-4},
$$

find f^{\prime}.
a $f^{\prime}(x)=-\frac{5}{(x+1)^{2}}$
b $f^{\prime}(x)=\frac{5}{(x-4)^{2}}$
c $f^{\prime}(x)=-\frac{5}{(x-4)^{2}}$
d $f^{\prime}(x)=\frac{5}{(x+1)^{2}}$

5 Given

$$
g(x)=4 x^{3}+2 x^{2}
$$

find $g^{\prime \prime}$.
a $g^{\prime \prime}(x)=12 x^{2}+4 x$
b $g^{\prime \prime}(x)=24 x+4$
c $g^{\prime \prime}(x)=24 x^{2}+4 x$
d $g^{\prime \prime}(x)=12 x+4$
6 Evaluate

$$
\lim _{x \rightarrow 6}\left(\frac{x^{2}-36}{x-6}\right)
$$

a 12
$b \infty$
c $-\infty$
d undefined
7 Evaluate

$$
\lim _{x \rightarrow-\infty}\left(x^{4}+5 x^{2}\right)
$$

a 24
$b \infty$
$c-\infty$
d undefined
8 Evaluate

$$
\lim _{x \rightarrow-3^{-}}\left(\frac{x^{2}+3}{x+3}\right)
$$

a 6
$b \infty$
c $-\infty$
d undefined
9 Given

$$
f(x)=\sqrt{100-x^{3}}
$$

find the maximum and minimum value of f, if they exist.
a maximum is 10 , minimum is 0
b maximum is 10 , no minimum
c no maximum, minimum is 0
d no maximum, no minimum

10 Given

$$
f(x)=x^{4}+20 x^{3}+100 x^{2}
$$

sketch a graph of f that shows all intercepts (if any), all local extrema (if any), and both infinite limits (if applicable).

Page 3 of 6

11 Find the value of

$$
\int_{0}^{1}\left(4 x^{3}-3 x^{2}+4 x-2\right) \mathrm{d} x .
$$

a 4
b 2
c 0
d 3
12 Given

$$
f(x)=\frac{1}{x+2}+\mathrm{e}^{3 x}
$$

find the antiderivatives (indefinite integrals) of f.
$a \int f(x) \mathrm{d} x=\frac{1}{2} \ln (x+2)+\frac{1}{3} \mathrm{e}^{3 x}+C$
$b \int f(x) \mathrm{d} x=\ln (x+2)+\mathrm{e}^{3 x}+C$
$c \int f(x) \mathrm{d} x=\frac{1}{2} \ln (x+2)+\mathrm{e}^{3 x}+C$
$d \int f(x) \mathrm{d} x=\ln (x+2)+\frac{1}{3} \mathrm{e}^{3 x}+C$
13 Suppose that a leaking oil platform is forming a circular oil slick. At the moment, the radius of this slick is 100 metres, and it's increasing at a rate of 3 metre per hour. How fast is the area of the oil slick increasing?
a $900 \pi \mathrm{~m}^{2} / \mathrm{h}$
b $30,000 \pi \mathrm{~m}^{2} / \mathrm{h}$
c $300 \pi \mathrm{~m}^{2} / \mathrm{h}$
d $600 \pi \mathrm{~m}^{2} / \mathrm{h}$

14 Suppose that the revenue from selling x thousand items in a year is

$$
R=10 x-x^{2}
$$

while the cost to make them is

$$
C=2 x+10,
$$

both measured in millions of dollars. How much should be made and sold in a year to maximise profit?
a 2000 per year
b 3000 per year
c 4000 per year
d 5000 per year
15 The annual relative growth rate of the world population of humans is estimated to be about 1.1% now, and the population was exactly 7 billion right about the beginning of last year (2012). If the same relative growth rate is maintained, what will the population be at the beginning of 2050 ?
a $7 \mathrm{e}^{209 / 500} \approx 10.6$ billion
b $7 \cdot 10^{209 / 500} \approx 18.3$ billion
c $7 \cdot 2^{209 / 500} \approx 9.3$ billion
d $7 \cdot 7^{209 / 500}=7^{709 / 500} \approx 15.8$ billion

Answers

$1 \mathrm{C}, 2 \mathrm{~A}, 3 \mathrm{D}, 4 \mathrm{C}, 5 \mathrm{~B}, 6 \mathrm{~A}, 7 \mathrm{~B}, 8 \mathrm{C}, 9 \mathrm{~A}, 10 \mathrm{~B}, 11 \mathrm{C}, 12 \mathrm{D}, 13 \mathrm{D}, 14 \mathrm{C}, 15 \mathrm{~A}$.

