
Notes Math-1400-es31 2015 July 28

Here is a list of most of the rules of di�erentiation that you will need in Applied Calcu-
lus. (There are a few more rules, involving logarithms, that we will cover later; they re
listed on the back.) The rules marked with asterisks are the ones that you absolutely
must know, but the others are also handy.

In the rules below, u and v stand for variable quantities, which may be complicat-
ed expressions involving many variables (or may be very simple). On the other hand,
k stands for a constant, which will usually be a simple real number (but could be some-
thing more complicated that evaluates to a constant). Also, a technicality about unde-
�ned operations (such as division by zero): what these rules state is that if the right-
hand side is de�ned, then so is the left-hand side and the two sides are equal.

Each rule is given with an example. In the example, the �rst step is the application
of the rule, but there may be more steps given by applying other rules or basic algebra.
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∗ d(u+ v) = du+ dv d(x2 + 3x) = d(x2) + d(3x) = 2x dx+ 3dx = (2x+ 3) dx
d(u+ k) = du d(x+ 3) = dx
d(−u) = −du d(−x2) = −d(x2) = −2x dx

d(u− v) = du− dv d(2x− 3y) = d(2x)− d(3y) = 2 dx− 3 dy
d(u− k) = du d(x2 − 4) = d(x2) = 2xdx

d(k − u) = −du d(3− 2y) = −d(2y) = −2 dy
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Notice: If you di�erentiate a scalar expression (one without the di�erential opera-
tor d in it) involving (say) the variables x, y, and z, then the result can always be put in
the form

(something) dx+ (something) dy + (something) dz,

where each (something) is again a scalar expression (no d). If it doesn t come out like
that, then you did something wrong!
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Here are the rules involving logarithms. Using the identities uv = exp (v lnu) and
logu v = ln v/lnu, you only need the two rules marked with asterisks. (Here, expu means
eu, where e ≈ 2.718 is the base of natural logarithms.)

∗ d(expu) = expu du d
Ä
exp (x− 2)

ä
= exp (x− 2) d(x− 2)

= exp (x− 2) dx
d(ku) = ku ln k du d(2x) = 2x ln 2 dx

d(uv) = uv−1(v du+ u lnudv) d(xx) = xx−1(x dx+ x lnx dx) = xx(1 + lnx) dx
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u
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=
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=
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d(logk u) =
du

u ln k
d(log3 x) =

dx

x ln 3
=
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ln 3x
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d(logu k) = − ln k du

u ln2 u
d(logp−2 e) = − ln e d(p− 2)

(p− 2) ln2 (p− 2)

= − dp

(p− 2) ln2 (p− 2)

= − 1

(p− 2) ln2 (p− 2)
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d(logu v) =
u lnu dv − v ln v du

uv ln2 u
d
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ä
=

x lnxd(x+ 1)− (x+ 1) ln (x+ 1) dx

x(x+ 1) ln2 x

=
x lnx− x ln (x+ 1)− ln (x+ 1)

x(x+ 1) ln2 x
dx

To �ll out the page, here are some more rules (without examples now) that we won t
need at all in this course, just in case you ever �nd that you need them in your life. (It s
all right if you don t have any idea what they re talking about; the last one on the left
should make sense to you by the end of the course, but we re still not going to use it.)

∗ d(sinu) = cosudu d(asinu) =
du√
1− u2

d(cosu) = − sinudu d(acosu) = − du√
1− u2

d(tanu) =
du

cos2 u
d(atanu) =

du

u2 + 1

d(sinhu) = coshudu d(asinhu) =
du√
u2 + 1

d(coshu) = sinhudu d(acoshu) =
du√
u2 − 1

d(tanhu) =
du

cosh2 u
d(atanhu) =

du

1− u2
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∂u
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