This is a summary of the concepts of differential calculus, from the primary perspective of the differential.

Differences

If a variable changes from the value a to the value b, then the difference between these two values is $b-a$. More generally, if one variable quantity x changes from a to b, then another variable u may change as well, but usually between different values. Whatever the difference in those values is, that is the difference in u as x varies from a to b. This may be denoted

$$
\Delta_{x=a}^{x=b} u, \Delta_{a}^{b} u, \Delta u
$$

depending on how explicit the notation needs to be. We will also use

$$
\left.u\right|_{x=a} ^{x=b},\left.u\right|_{x=a} ^{b},\left.u\right|_{a} ^{b},
$$

for the same idea.
For example, let u be $2 x+3$, and consider $\Delta_{x=4}^{x=5} u$. Calculate:

$$
\Delta_{x=4}^{x=5} u=\Delta_{4}^{5}(2 x+3)=[2(5)+3]-[2(4)+3]=13-11=2 .
$$

In other words, as x varies from 4 to $5, u$ varies from 11 to 13 , and the difference between these is 2 .

Differentials

The idea behind a differential is that it is an infinitely small difference. There are various ways to make this idea logically precise, but we will not go into that in this applied course. (I will return to this at the end of the course, if there is time.) In place of the uppercase Greek letter ' Δ ' for a standard-sized (finitesimal) change, we use the lowercase Latin letter ' d ' for an infinitely small (infinitesimal) change. So if u varies smoothly, then $\mathrm{d} u$ is the differential of u, which more or less means $\Delta_{a}^{b} u$ when $b-a$ is infinitely small (but not quite zero).

Although this is usually not an issue in applied situations, it's important that u be a smoothly varying quantity, also called a smooth variable. Exactly what this means is, again, something that can be made precise. But for now, you can think of it as meaning that, whenever the underlying varying reality changes by a small amount, the variable quantity u also changes by a small amount, at a definite rate, with no sudden jumps or infinitely fast change.

Differences and differentials of linear expressions

The following rules hold exactly for differences:

- $\Delta k=0$ if k is constant;
- $\Delta(u+v)=\Delta u+\Delta v$;
- $\Delta(k u)=k \Delta u$ if k is constant.

These equations hold for finitesimal changes, so they also hold for infinitesimal changes:

- $\mathrm{d} k=0$ if k is constant (the Constant Rule);
- $\mathrm{d}(u+v)=\mathrm{d} u+\mathrm{d} v$ (the Sum Rule);
- $\mathrm{d}(k u)=k \mathrm{~d} u$ if k is constant (the Multiple Rule).

This allows us to calculate differentials of linear expressions.

For example:

$$
\begin{gathered}
\mathrm{d}(7 x)=7 \mathrm{~d} x \\
\mathrm{~d}(-5 x)=-5 \mathrm{~d} x \\
\mathrm{~d}(x+2)=\mathrm{d} x+\mathrm{d}(2)=\mathrm{d} x+0=\mathrm{d} x \\
\mathrm{~d}(y-4)=\mathrm{d} y+\mathrm{d}(-4)=\mathrm{d} y+0=\mathrm{d} y \\
\mathrm{~d}(2 t+3)=\mathrm{d}(2 t)+\mathrm{d}(3)=2 \mathrm{~d} t+0=2 \mathrm{~d} t \\
\mathrm{~d}(7-x)=\mathrm{d}(-1 x+7)=-1 \mathrm{~d} x+0=-\mathrm{d} x \\
\mathrm{~d}(2 x+3 y)=\mathrm{d}(2 x)+\mathrm{d}(3 y)=2 \mathrm{~d} x+3 \mathrm{~d} y
\end{gathered}
$$

etc.

Differentials of more complicated expressions

There is no simple rule for differences of expressions like x^{2}, or more generally for products of variables such as $u v$. For differentials, however, we have the Product Rule:

$$
\mathrm{d}(u v)=v \mathrm{~d} u+u \mathrm{~d} v
$$

The reason for this may be seen by the following rectangle:

This rectangle has length u and height v, so its area is $u v$. However, both u and v are increasing, so the area is also increasing. (A similar picture could be drawn if one or both are decreasing instead.) The rectangle increases in two directions, upwards and to the right. Upwards, the increase is a strip of length u and height $\mathrm{d} v$, with an area of $u \mathrm{~d} v$; to the right, the increase is a strip of length v and height $\mathrm{d} u$, with an area of $v \mathrm{~d} u$. Therefore, the total change in the area, which is $\mathrm{d}(u v)$, is $u \mathrm{~d} v+v \mathrm{~d} u$, in accordance with the Product Rule. (It is precisely because we're looking only at infinitesimal changes that we can ignore the movement in the upper right corner of the rectangle.)

Using the Product Rule, we can derive rules to handle more general expressions. I will list all of the rules that we will need in other handouts; here I will show how some of them may be proved (assuming the previous rules).

Suppose that $v \neq 0$ and let $w=u / v$; then $v w=u$. Calculate:

$$
\begin{aligned}
\mathrm{d}(v w) & =\mathrm{d} u \\
w \mathrm{~d} v+v \mathrm{~d} w & =\mathrm{d} u \\
v \mathrm{~d} w & =\mathrm{d} u-w \mathrm{~d} v \\
\mathrm{~d} w & =\frac{\mathrm{d} u-w \mathrm{~d} v}{v} \\
\mathrm{~d}\left(\frac{u}{v}\right) & =\frac{\mathrm{d} u-\frac{u}{v} \mathrm{~d} v}{v} \\
\mathrm{~d}\left(\frac{u}{v}\right) & =\frac{v \mathrm{~d} u-u \mathrm{~d} v}{v^{2}}
\end{aligned}
$$

The last line is the Quotient Rule.

Consider powers of u :

$$
\begin{gathered}
\mathrm{d}\left(u^{2}\right)=\mathrm{d}(u u)=u \mathrm{~d} u+u \mathrm{~d} u=2 u \mathrm{~d} u \\
\mathrm{~d}\left(u^{3}\right)=\mathrm{d}\left(u^{2} u\right)=u^{2} \mathrm{~d} u+u \mathrm{~d}\left(u^{2}\right)=u^{2} \mathrm{~d} u+u(2 u \mathrm{~d} u)=u^{2} \mathrm{~d} u+2 u^{2} \mathrm{~d} u=3 u^{2} \mathrm{~d} u \\
\mathrm{~d}\left(u^{4}\right)=\mathrm{d}\left(u^{3} u\right)=u^{3} \mathrm{~d} u+u \mathrm{~d}\left(u^{3}\right)=u^{3} \mathrm{~d} u+u\left(3 u^{2} \mathrm{~d} u\right)=u^{3} \mathrm{~d} u+3 u^{3} \mathrm{~d} u=4 u^{3} \mathrm{~d} u \\
\text { etc. }
\end{gathered}
$$

In general,

$$
\mathrm{d}\left(u^{k}\right)=k u^{k-1} \mathrm{~d} u
$$

whenever k is a constant natural number.
Now consider negative powers. If k is a constant negative integer and $u \neq 0$, then $u^{k} u^{-k}=1$. Calculate:

$$
\begin{aligned}
\mathrm{d}\left(u^{k} u^{-k}\right) & =\mathrm{d}(1) \\
u^{-k} \mathrm{~d}\left(u^{k}\right)+u^{k} \mathrm{~d}\left(u^{-k}\right) & =0 \\
u^{-k}\left(k u^{k-1} \mathrm{~d} u\right)+u^{k} \mathrm{~d}\left(u^{-k}\right) & =0 \\
k u^{-1} \mathrm{~d} u+u^{k} \mathrm{~d}\left(u^{-k}\right) & =0 \\
u^{k} \mathrm{~d}\left(u^{-k}\right) & =-k u^{-1} \mathrm{~d} u \\
\mathrm{~d}\left(u^{-k}\right) & =-k u^{-k-1} \mathrm{~d} u .
\end{aligned}
$$

Since also

$$
\mathrm{d}\left(u^{0}\right)=\mathrm{d}(1)=0=0 u^{-1} \mathrm{~d} u
$$

if $u \neq 0$, the Power Rule

$$
\mathrm{d}\left(u^{k}\right)=k u^{k-1} \mathrm{~d} u
$$

holds whenever k is a constant and the right-hand side is defined (at least when k is an integer, but we'll see shortly that it holds even when k is fractional).

Now consider roots. If k is a constant natural number and $\sqrt[k]{u}$ is defined as a real quantity, then $(\sqrt[k]{u})^{k}=u$. Calculate:

$$
\begin{aligned}
\mathrm{d}\left((\sqrt[k]{u})^{k}\right) & =\mathrm{d} u \\
k(\sqrt[k]{u})^{\frac{k-1}{\mathrm{~d}}(\sqrt[k]{u})}= & \mathrm{d} u \\
\frac{k u}{\sqrt[k]{u}} \mathrm{~d}(\sqrt[k]{u}) & =\mathrm{d} u \\
\mathrm{~d}(\sqrt[k]{u}) & =\frac{\sqrt[k]{u} \mathrm{~d} u}{k u}
\end{aligned}
$$

This is the Root Rule, where in the last step we assume that $u \neq 0$.
Another way to say this is that

$$
\mathrm{d}\left(u^{1 / k}\right)=\frac{1}{k} u^{\frac{1}{k}-1} \mathrm{~d} u
$$

the Power Rule holds whenever k is a constant rational number and its right-hand side is defined. We may then argue that the Power Rule holds whenever k is any constant real number, because u^{k} is sandwiched between the various rational powers of u. (This argument only works when u is nonnegative, but that's the only time that u^{k} is defined as a real number when k is irrational, so that's all right. The Power Rule does still work with complex numbers, if you define exponentiation of complex numbers appropriately, but we're not going to get into that.)

We have now derived all of the rules that we will need this month; the next handout will include a list of these rules together with some simplified special cases.

Strategy for calculating differentials

The general method for calculating the differential of an expression is to work from the outside in, reversing the order of operations to find out which rule to use.

For example, to differentiate $\sqrt{x^{3} y}+\frac{x}{y-3}$, we first use the rule for addition (the Sum Rule), since the final operation is addition. Then in the first summand, we use the rules for roots, then for multiplication, then for powers; while in the second summand, we use the rules for division, then for subtraction, then for constants. So:

$$
\begin{aligned}
\mathrm{d}\left(\sqrt{x^{3} y}+\frac{x}{y-3}\right) & =\mathrm{d}\left(\sqrt{x^{3} y}\right)+\mathrm{d}\left(\frac{x}{y-3}\right) \\
& =\frac{\sqrt{\left(x^{3} y\right)} \mathrm{d}\left(x^{3} y\right)}{2\left(x^{3} y\right)}+\frac{(y-3) \mathrm{d}(x)-(x) \mathrm{d}(y-3)}{(y-3)^{2}} \\
& =\frac{\sqrt{x^{3} y}\left((y) \mathrm{d}\left(x^{3}\right)+\left(x^{3}\right) \mathrm{d}(y)\right)}{2 x^{3} y}+\frac{(y-3) \mathrm{d} x-x(\mathrm{~d}(y)-\mathrm{d}(3))}{(y-3)^{2}} \\
& =\frac{\sqrt{x^{3} y}\left(y\left(3(x)^{2} \mathrm{~d}(x)\right)+x^{3} \mathrm{~d} y\right)}{2 x^{3} y}+\frac{(y-3) \mathrm{d} x-x(\mathrm{~d} y-0)}{(y-3)^{2}} \\
& =\frac{\sqrt{x^{3} y}\left(3 x^{2} y \mathrm{~d} x+x^{3} \mathrm{~d} y\right)}{2 x^{3} y}+\frac{(y-3) \mathrm{d} x-x \mathrm{~d} y}{(y-3)^{2}}
\end{aligned}
$$

The process is messy and can be tedious, but it should be straightforward.
In Calculus, it's usually considered OK to leave an expression as above. However, you could expand it out, simplify, and gather together the $\mathrm{d} x$ and $\mathrm{d} y$ terms:

$$
\left(\frac{3 \sqrt{x^{3} y}}{2 x}+\frac{1}{y-3}\right) \mathrm{d} x+\left(\frac{\sqrt{x^{3} y}}{2 y}-\frac{x}{(y-3)^{2}}\right) \mathrm{d} y
$$

Sometimes this will be useful. In any case, it's important that this can be done; every term in the final expression for a differential should have (as a factor) the differential of one (and only one) variable.

When you're doing algebra with infinitesimals, you must treat $\mathrm{d} x, \mathrm{~d} y$, and so on as complete variables in their own right. In the calculus steps, you simplify $\mathrm{d}\left(x^{2}\right)$ (for example) to $2 x \mathrm{~d} x$, but then you think of this expression as 2 times x times $\mathrm{d} x$, and that's it. (You definitely do not want to think of $\mathrm{d} x$ as d times x; that's not a thing.)

Derivatives

If u and v are smooth variables and $\mathrm{d} v \neq 0$, then v will change a little bit whenever u does. Another way to say this is that u cannot change unless v does, so we may view the change in u as induced by the change in v, as a result of the sensitivity of u to changes in v. This sensitivity is measured by the derivative of u with respect to v :

$$
\frac{\mathrm{d} u}{\mathrm{~d} v}
$$

Since 'derivative' is a rather generic term, this may also be called the sensitivity of u with respect to v or (especially when v measures time) the rate of change of u with respect to v.

For example, if $x=3 t^{2}$, then calculate:

$$
\begin{aligned}
\mathrm{d} x & =\mathrm{d}\left(3 t^{2}\right) \\
\mathrm{d} x & =3 \mathrm{~d}\left(t^{2}\right) \\
\mathrm{d} x & =3(2 t \mathrm{~d} t) \\
\mathrm{d} x & =6 t \mathrm{~d} t \\
\frac{\mathrm{~d} x}{\mathrm{~d} t} & =6 t
\end{aligned}
$$

That is, the derivative of $3 t^{2}$ with respect to t is $6 t$. We sometimes write

$$
\left(\frac{\mathrm{d}}{\mathrm{~d} t}\right)\left(3 t^{2}\right)=6 t
$$

the operator $\mathrm{d} / \mathrm{d} t$ means to take the differential (' d ') and then divide by $\mathrm{d} t(6 / \mathrm{d} t$ '), which together means to take the derivative with respect to t.

We can go on and find the derivative of the derivative:

$$
\begin{aligned}
\mathrm{d}(\mathrm{~d} x / \mathrm{d} t) & =\mathrm{d}(6 t) \\
\mathrm{d}(\mathrm{~d} x / \mathrm{d} t) & =6 \mathrm{~d} t \\
\frac{\mathrm{~d}(\mathrm{~d} x / \mathrm{d} t)}{\mathrm{d} t} & =6
\end{aligned}
$$

The left-hand side here is often written ' $\mathrm{d}^{2} x / \mathrm{d} t^{2}$ ', but this notation does not make literal sense in the way that $\mathrm{d} x / \mathrm{d} t$ does. A better way to write the left-hand side of the equation above is as $(\mathrm{d} / \mathrm{d} t)^{2} x$, because we've applied the operator $\mathrm{d} / \mathrm{d} t$ twice; that is,

$$
\left(\frac{\mathrm{d}}{\mathrm{~d} t}\right)^{2}\left(3 t^{2}\right)=\left(\frac{\mathrm{d}}{\mathrm{~d} t}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} t}\right)\left(3 t^{2}\right)=6
$$

In words, the second derivative of $3 t^{2}$ with respect to t is 6 . (You could go on and take a third derivative, etc.)

If we're not given a formula for one variable in terms of another, we can still try to find the derivative as long as we're given an equation relating them. For example, suppose that $x^{2}+y^{2}=1$. Then calculate:

$$
\begin{aligned}
\mathrm{d}\left(x^{2}+y^{2}\right) & =\mathrm{d}(1) \\
\mathrm{d}\left(x^{2}\right)+\mathrm{d}\left(y^{2}\right) & =0 \\
2 x \mathrm{~d} x+2 y \mathrm{~d} y & =0 ; \\
2 y \mathrm{~d} y & =-2 x \mathrm{~d} x \\
\mathrm{~d} y & =-\frac{x}{y} \mathrm{~d} x \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =-\frac{x}{y}
\end{aligned}
$$

This is called an implicit derivative; although we've found the derivative of y with respect to x (assuming that $y \neq 0$), the expression for it involves both x and y and is not explicitly in terms of x alone.

Derivatives of functions

If we apply a function f to a variable x, then we may give a name to the result and say, for example, that

$$
y=f(x)
$$

If we had an explicit formula for f, then we could differentiate both sides of this equation and find that $\mathrm{d} y$ is some expression multiplied by $\mathrm{d} x$. Even without a formula for f, if we assume that f is a fixed smooth function (another concept that can be made precise), then $\mathrm{d} y$ is the product of $\mathrm{d} x$ and the result of applying some other smooth function f^{\prime}. That is,

$$
\mathrm{d}(f(x))=f^{\prime}(x) \mathrm{d} x
$$

if $f(x)$ depends only on x. This function f^{\prime} is called the derivative of f, because $f^{\prime}(x)$ is the derivative of $f(x)$ with respect to x. Then the derivative of f^{\prime}, denoted $f^{\prime \prime}$, is the second derivative of f, etc.

For example, if $f(x)=x^{2}$, then calculate:

$$
\begin{aligned}
\mathrm{d}(f(x)) & =\mathrm{d}\left(x^{2}\right) \\
f^{\prime}(x) \mathrm{d} x & =2 x \mathrm{~d} x \\
f^{\prime}(x) & =2 x .
\end{aligned}
$$

Then for the second derivative, I go on:

$$
\begin{aligned}
\mathrm{d}\left(f^{\prime}(x)\right) & =\mathrm{d}(2 x) \\
f^{\prime \prime}(x) \mathrm{d} x & =2 \mathrm{~d} x \\
f^{\prime \prime}(x) & =2
\end{aligned}
$$

And you could go further.
We can take the derivative of one quantity only with respect to another quantity, but we can take the derivative of a function in an absolute sense; in symbols, $\mathrm{d} y / \mathrm{d} x$ is the derivative of y with respect to x, while f^{\prime} is the derivative of f, period. Of course, the relationship between these ideas is that

$$
f^{\prime}(x)=\frac{\mathrm{d}(f(x))}{\mathrm{d} x}
$$

on the left-hand side, we take the derivative of f and then evaluate this at x, while on the right-hand side, we evaluate f at x and then take the derivative of this respect to that same x. People will often mix up the notations for derivatives of quantities and functions, writing ' $\mathrm{d} f / \mathrm{d} x^{\prime}$, ' y^{\prime} ', and the like. You can often get away with this, because the context make it clear what is meant, but I will avoid this abuse of notation. (The textbook, however, does this a lot.)

There is nothing special about the quantity x; in general,

$$
\mathrm{d}(f(u))=f^{\prime}(u) \mathrm{d} u
$$

whenever f is a fixed smooth function and u is a smooth variable. For example,

$$
\mathrm{d}\left(f\left(x^{2}\right)\right)=f^{\prime}\left(x^{2}\right) \mathrm{d}\left(x^{2}\right)=f^{\prime}\left(x^{2}\right)(2 x \mathrm{~d} x)=2 x f^{\prime}\left(x^{2}\right) \mathrm{d} x
$$

which exists even if you don't know which smooth function f is. If you put in $g(x)$ for u, express $f(g(x))$ as $(f \circ g)(x)$, and divide both sides by $\mathrm{d} x$, then you get

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

if instead you write $f(u)$ as y, express $f^{\prime}(u)$ as $\mathrm{d} y / \mathrm{d} u$, and divide both sides by $\mathrm{d} x$, then you get

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \frac{\mathrm{~d} u}{\mathrm{~d} x}
$$

People make a big deal out of these two equations, calling them (both!) the Chain Rule, but in practice you never need to use this; you only need to apply the rules for differentials, divide when you want to get derivatives, and apply the normal rules of algebra. (In a rigorous development, there is a theorem to be proved here, but we don't need to worry about it.)

Exercises on differences and differentials

1. Find $\Delta_{1}^{2}\left(5-x^{2}\right)$. 2. Find $\Delta_{-2}^{-1}\left(5-x^{2}\right)$. 3. Find $\Delta_{1}^{4}\left(3 x^{2}\right)$. 4. Find $\Delta_{2}^{5}\left(3 x^{2}\right)$.
2. Refer to Exercise 2.4.79 on page 145 of the official textbook. Find the change in revenue if the number of car seats sold changes from 1000 to 1050.
3. Refer to Exercise 2.4 .80 on page 146 of the official textbook. Find the change in profit if the number of car seats sold changes from 800 to 850 .
4. Find $\mathrm{d}(-5)$. 8. Find $\mathrm{d}(9)$. 9. Find $\mathrm{d}(3 x-7)$. 10. Find $\mathrm{d}(4-6 x)$.
5. Find $d\left(2-3 x^{2}\right)$.
6. Find $\mathrm{d}\left(2 x^{2}+8\right)$.
7. Find $\mathrm{d}\left(y^{2}+6 y-10\right)$. 14. Find $\mathrm{d}\left(t^{2}+4 t+7\right)$.
8. Find the differential of $2 x^{2}-7 x+3$. 16. Find the differential of $2 x^{2}+5 x+1$.
9. Find $\mathrm{d}\left(-P^{2}+4 P-9\right)$. 18. Find $\mathrm{d}\left(-z^{2}+9 z-2\right)$. 19. Find $\mathrm{d}\left(2 r^{3}+1\right)$. 20. Find $\mathrm{d}\left(-2 a^{3}+5\right)$.
10. Find $\mathrm{d}\left(4+\frac{4}{x}\right)$. 22. Find $\mathrm{d}\left(\frac{6}{x}-2\right)$. 23. Find $\mathrm{d}(5+3 \sqrt{x})$. 24. Find $\mathrm{d}(3-7 \sqrt{x})$.
11. Find $\mathrm{d}(10 \sqrt{n+5})$. 26. Find $\mathrm{d}(16 \sqrt{k+9})$. 27. Find $\mathrm{d}\left(\frac{3 x}{x+2}\right)$. 28. Find $\mathrm{d}\left(\frac{5 x}{3+x}\right)$.
12. Find $\mathrm{d}(3 x+5 y)$. 30. Find $\mathrm{d}(-2 x+6 y)$. 31. Find $\mathrm{d}\left(3 p^{2}-4 q-18\right)$. 32. Find $\mathrm{d}\left(2 s^{3}+5 t-2\right)$.
13. Find the differential of $2 x y+3 x^{2}$. 34. Find the differential of $3 x y-2 y^{2}$.
14. Find $\mathrm{d}\left((x+3)^{2}\right)$.
15. Find $\mathrm{d}\left((x-6)^{3}\right)$.
16. Find $\mathrm{d}\left((2 t+5)^{3}\right)$.
17. Find $\mathrm{d}\left((3 s-7)^{5}\right)$.
18. Find $\mathrm{d}\left((5-2 h)^{4}\right)$. 40. Find $\mathrm{d}\left((9-5 q)^{2}\right)$. 41. Find $\mathrm{d}\left((4+0.2 x)^{5}\right)$. 42. Find $\mathrm{d}\left((6-0.5 x)^{4}\right)$.
19. Find $\mathrm{d}\left(\left(3 \alpha^{2}+5\right)^{5}\right)$. 44. Find $\mathrm{d}\left(\left(5 \beta^{2}-3\right)^{6}\right)$. 45. Find $\mathrm{d}\left((2 x-5)^{1 / 2}\right)$. 46. Find $\mathrm{d}\left((4 x+3)^{1 / 2}\right)$.
20. Find $\mathrm{d}\left(\left(x^{4}+1\right)^{-2}\right)$. 48. Find $\mathrm{d}\left(\left(x^{5}+2\right)^{-3}\right)$. 49. Find $\mathrm{d}\left(2 x^{3}\left(x^{2}-2\right)\right)$. 50. Find $\mathrm{d}\left(5 x^{2}\left(x^{3}+2\right)\right)$.
21. Find the differential of $(u-3)(2 u-1)$. 52. Find the differential of $(3 v+2)(4 v-5)$.
22. Find $\mathrm{d}\left(\frac{x}{x-3}\right)$. 54. Find $\mathrm{d}\left(\frac{3 x}{2 x+1}\right)$. 55. Find $\mathrm{d}\left(\frac{2 x+3}{x-2}\right)$. 56. Find $\mathrm{d}\left(\frac{3 x-4}{2 x+3}\right)$.
23. Find the differential of $\left(x^{2}+1\right)(2 x-3)$. 58. Find the differential of $(3 x+5)\left(x^{2}-3\right)$.
24. Find the differential of $(0.4 x+2)(0.5 x-5)$. 60. Find the differential of $(0.5 x-4)(0.2 x+1)$.
25. Find the differential of $\frac{x^{2}+1}{2 x-3}$. 62. Find the differential of $\frac{3 x+5}{x^{2}-3}$.
26. Find the differential of $\left(x^{2}+2\right)\left(x^{2}-3\right)$. 64. Find the differential of $\left(x^{2}-4\right)\left(x^{2}+5\right)$.
27. Find the differential of $\frac{x^{2}+2}{x^{2}-3}$. 66. Find the differential of $\frac{x^{2}-4}{x^{2}+5}$.
28. If f is a fixed function, find $\mathrm{d}(f(2 x+3))$. 68. If f is a fixed function, find $\mathrm{d}(f(4 x+2))$.
29. If g is a fixed function, find the differential of $g\left(2 t^{2}+3\right)$.
30. If k is a fixed function, find the differential of $k\left(4 y^{3}+2\right)$.

Answers to odd-numbered exercises

1. -3 3. 45
2. $\$ 437.50$
3. 0 9. $3 \mathrm{~d} x$
4. $-6 x \mathrm{~d} x \quad$ 13. $(2 y+6) \mathrm{d} y$
5. $(4 x-7) \mathrm{d} x$
6. $(-2 P+4) \mathrm{d} P \quad$ 19. $6 r^{2} \mathrm{~d} r$
7. $-\frac{4}{x^{2}} \mathrm{~d} x \quad$ 23. $\frac{3 \sqrt{x}}{2 x} \mathrm{~d} x$
8. $\frac{5 \sqrt{n+5}}{n+5} \mathrm{~d} n \quad$ 27. $\frac{6}{(x+2)^{2}} \mathrm{~d} x$
9. $3 \mathrm{~d} x+5 \mathrm{~d} y$ 31. $6 p \mathrm{~d} p-4 \mathrm{~d} q$
10. $(2 y+6 x) \mathrm{d} x+2 x \mathrm{~d} y$
11. $2(x+3) \mathrm{d} x$ 37. $6(2 t+5)^{2} \mathrm{~d} t$
12. $-8(5-2 h)^{3} \mathrm{~d} h \quad$ 41. $(4+0.2 x)^{4} \mathrm{~d} x$
13. $30 \alpha\left(3 \alpha^{2}+5\right)^{4} \mathrm{~d} \alpha \quad$ 45. $(2 x-5)^{-1 / 2} \mathrm{~d} x$
14. $-8 x^{3}\left(x^{4}+1\right)^{-3} \mathrm{~d} x \quad$ 49. $2 x^{2}\left(5 x^{2}-6\right) \mathrm{d} x$
15. $(4 u-7) \mathrm{d} u$
16. $-\frac{3}{(x-3)^{2}} \mathrm{~d} x \quad 55 .-\frac{7}{(x-2)^{2}} \mathrm{~d} x$
17. $2\left(3 x^{2}-3 x+1\right) \mathrm{d} x$
18. $(0.4 x-1) \mathrm{d} x$
19. $\frac{2\left(x^{2}-3 x-1\right)}{(2 x-3)^{2}} \mathrm{~d} x$
20. $2 x\left(2 x^{3}-1\right) \mathrm{d} x$
21. $-\frac{10 x}{\left(x^{2}-3\right)^{2}} \mathrm{~d} x$
22. $2 f^{\prime}(2 x+3) \mathrm{d} x$
23. $4 t g^{\prime}\left(2 t^{2}+3\right) \mathrm{d} t$
