1.1.9 One way to find the area of a triangle from its side lengths is to use Hero's Formula:

$$
K=\sqrt{s(s-a)(s-b)(s-c)}
$$

Here, s is the semiperimeter: half of the perimeter $p=a+b+c$. Finally, a, b, and c are the side lengths themselves.

In our case, each side length is x, so calculate:

$$
\begin{aligned}
a & =x ; \\
b & =x ; \\
c & =x ; \\
p=a+b+c & =x+x+x=3 x ; \\
s=\frac{1}{2} p & =\frac{1}{2}(3 x)=\frac{3}{2} x ; \\
s-a & =\frac{3}{2} x-x=\frac{1}{2} x ; \\
s-b & =\frac{3}{2} x-x=\frac{1}{2} x ; \\
s-c & =\frac{3}{2} x-x=\frac{1}{2} x ; \\
K=\sqrt{s(s-a)(s-b)(s-c)} & =\sqrt{\frac{3}{2} x \cdot \frac{1}{2} x \cdot \frac{1}{2} x \cdot \frac{1}{2} x}=\sqrt{\frac{3}{16} x^{4}}=\frac{1}{4} \sqrt{3} x^{2} .
\end{aligned}
$$

Thus, the perimeter and area are respectively $3 x$ and $\sqrt{3} x^{2} / 4$.
1.1.61 Two variable quantities are inversely proportional iff their product is constant. At one point, this product is

$$
r s=(6)(4)=24
$$

so later, when $r=10$, we may solve for s :

$$
\begin{aligned}
r s & =24 ; \\
10 s & =24 ; \\
s & =\frac{12}{5} .
\end{aligned}
$$

