4.10.39 Let x be the distance in feet from the pole to the ball's shadow. At all times, we have this proportion from similar triangles:

$$
\frac{x}{50}=\frac{x-30}{50-s}
$$

To make things easier, I write this with multiplication instead of with division and simplify:

$$
\begin{aligned}
x(50-s) & =50(x-30) \\
50 x-x s & =50 x-1500 \\
x s & =1500
\end{aligned}
$$

Then I differentiate (take differentials of) both sides:

$$
\begin{aligned}
\mathrm{d}(x s) & =\mathrm{d}(1500) ; \\
s \mathrm{~d} x+x \mathrm{~d} s & =0
\end{aligned}
$$

Since I'm interested in the speed of change, I divide by $\mathrm{d} t$; I^{\prime} ll also use dot notation to make the algebra easier:

$$
\begin{array}{r}
s \frac{\mathrm{~d} x}{\mathrm{~d} t}+x \frac{\mathrm{~d} s}{\mathrm{~d} t}=0 \\
s \dot{x}+x \dot{s}=0
\end{array}
$$

Another fact true at all times is given in the problem statement; I'll perform the same steps on it:

$$
\begin{aligned}
s & =16 t^{2} \\
\mathrm{~d} s & =\mathrm{d}\left(16 t^{2}\right) \\
\mathrm{d} s & =32 t \mathrm{~d} t \\
\frac{\mathrm{~d} s}{\mathrm{~d} t} & =32 t \frac{\mathrm{~d} t}{\mathrm{~d} t} \\
\dot{s} & =32 t
\end{aligned}
$$

Now I have these four equations in the five quantites $t, s, x, \dot{s}, \dot{x}$:

$$
\begin{aligned}
s & =16 t^{2} \\
x s & =1500 \\
s \dot{x}+x \dot{s} & =0 \\
\dot{s} & =32 t
\end{aligned}
$$

These are all true in general; I am interested in the moment when $t=1 / 2$. Then I can calculate the rest:

$$
\begin{gathered}
s=16 t^{2}=16\left(\frac{1}{2}\right)^{2}=4 \\
x=\frac{1500}{s}=\frac{1500}{4}=375 \\
\dot{s}=32 t=32\left(\frac{1}{2}\right)=16 \\
\dot{x}=-\frac{x \dot{s}}{s}=-\frac{(375)(16)}{4}=-1500 .
\end{gathered}
$$

Since we've been measuring distances in metres and times in seconds, the speed at which the shadow of the ball moves is fifteen hundered metres per second.

