### 2.3.11

$$
\begin{gathered}
\sqrt{3}<x<\sqrt{5} \\
\sqrt{3}-2<x-2<\sqrt{5}-2 \\
-(2-\sqrt{3})<x-2<\sqrt{5}-2 .
\end{gathered}
$$

Since $\sqrt{5}-2<2-\sqrt{3}$ (check on a calculator if you want), use

$$
\delta=\sqrt{5}-2
$$

which is positive.

### 2.3.23

$$
\begin{gathered}
|f(x)-L|<\epsilon \\
\left|x^{2}-4\right|<0.5 \\
-0.5<x^{2}-4<0.5 \\
3.5<x^{2}<4.5
\end{gathered}
$$

Since everything here is positive, we can take square roots.

$$
\sqrt{3.5}<|x|<\sqrt{4.5}
$$

Since $x \approx c=-2$, we can assume that $|x|=-x$.

$$
\begin{gathered}
\sqrt{3.5}<-x<\sqrt{4.5} \\
-\sqrt{3.5}>x>-\sqrt{4.5} \\
-\sqrt{4.5}<x<-\sqrt{3.5} \\
2-\sqrt{4.5}<x+2<2-\sqrt{3.5} \\
-(\sqrt{4.5}-2)<x-(-2)<2-\sqrt{3.5} .
\end{gathered}
$$

Since $\sqrt{4.5}-2<2-\sqrt{3.5}$, use

$$
\delta=\sqrt{4.5}-2
$$

which is positive.

### 2.3.39

$$
\begin{gathered}
|\sqrt{x-5}-2|<\epsilon \\
-\epsilon<\sqrt{x-5}-2<\epsilon \\
2-\epsilon<\sqrt{x-5}<2+\epsilon
\end{gathered}
$$

Since $\epsilon \approx 0$, everything here is positive, so we can take squares.

$$
\begin{gathered}
4-4 \epsilon+\epsilon^{2}<x-5<4+4 \epsilon+\epsilon^{2} \\
9-4 \epsilon+\epsilon^{2}<x<9+4 \epsilon+\epsilon^{2} \\
-4 \epsilon+\epsilon^{2}<x-9<4 \epsilon+\epsilon^{2} \\
-\left(4 \epsilon-\epsilon^{2}\right)<x-9<4 \epsilon+\epsilon^{2}
\end{gathered}
$$

Since $4 \epsilon-\epsilon^{2}<4 \epsilon+\epsilon^{2}$, use

$$
\delta=4 \epsilon-\epsilon^{2}
$$

which is positive since $\epsilon \approx 0$.

