2.6.9 As $x \rightarrow \infty$ (so $2 x \rightarrow \infty$), $\sin 2 x$ tends to no particular value; still, I know something about it, and that's enough:

$$
\begin{gathered}
-1 \leq \sin 2 x \leq 1 \\
-\frac{1}{x} \leq \frac{\sin 2 x}{x} \leq \frac{1}{x} \\
\lim _{x \rightarrow \infty}\left(-\frac{1}{x}\right) \leq \lim _{x \rightarrow \infty} \frac{\sin 2 x}{x} \leq \lim _{x \rightarrow \infty} \frac{1}{x} \\
0 \leq \lim _{x \rightarrow \infty} \frac{\sin 2 x}{x} \leq 0
\end{gathered}
$$

Therefore,

$$
\lim _{x \rightarrow \infty} \frac{\sin 2 x}{x}=0
$$

2.6.27 As $x \rightarrow \infty$, both $2 \sqrt{x}+x^{-1} \rightarrow \infty$ and $3 x-7 \rightarrow \infty$, so factor out leading powers of x :

$$
\lim _{x \rightarrow \infty} \frac{2 \sqrt{x}+x^{-1}}{3 x-7}=\lim _{x \rightarrow \infty} \frac{\sqrt{x}\left(2+x^{-3 / 2}\right)}{x(3-7 / x)}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{x}} \frac{2+x^{-3 / 2}}{3-7 / x}=0 \frac{2+0}{3-0}=0 .
$$

2.6.41 As $x \rightarrow-8^{+}, x+8 \rightarrow 0$, and I can't divide by 0 . However, I can still figure out an infinite limit:

$$
\begin{aligned}
x & \rightarrow-8^{+} ; \\
x & >-8 ; \\
x+8 & >0 .
\end{aligned}
$$

Since $2 x \rightarrow 16>0$ and $x+8>0$, the result is positve:

$$
\lim _{x \rightarrow-8^{+}} \frac{2 x}{x+8}=\infty
$$

