3.1.11 First, $f(2)=(2)^{2}+1=5$, so this is not a trick question.

Now,

$$
f(2+h)=(2+h)^{2}+1=5+4 h+h^{2}
$$

so

$$
f(2+h)-f(2)=\left(5+4 h+h^{2}\right)-(5)=4 h+h^{2} ;
$$

then

$$
\frac{f(2+h)-f(2)}{h}=\frac{4 h+h^{2}}{h}=4+h
$$

so

$$
\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0}(4+h)=4+(0)=4 .
$$

Thus, $f^{\prime}(2)=4$.
The line with slope 4 through $(2,5)$ has equation

$$
y=4(x-2)+5
$$

in (x, y), or

$$
y=4 x-3
$$

3.2.1 First,

$$
f(c+h)=4-(c+h)^{2}=4-c^{2}-2 h c-h^{2},
$$

so

$$
f(c+h)-f(c)=\left(4-c^{2}-2 h c-h^{2}\right)-\left(4-c^{2}\right)=-2 h c-h^{2} ;
$$

then

$$
\frac{f(c+h)-f(c)}{h}=\frac{-2 h c-h^{2}}{h}=-2 c-h
$$

So

$$
f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=\lim _{h \rightarrow 0}(-2 c-h)=-2 c-(0)=-2 c .
$$

Therefore,

$$
\begin{gathered}
f^{\prime}(-3)=-2(-3)=6, \\
f^{\prime}(0)=-2(0)=0, \\
f^{\prime}(1)=-2(1)=-2 .
\end{gathered}
$$

