3.3.3 Clearly we want derivatives of s with respect to t, so take differentials using the appropriate rules and divide by $\mathrm{d} t$.

$$
\begin{aligned}
s & =5 t^{3}-3 t^{5} \\
\mathrm{~d} s & =\mathrm{d}\left(5 t^{3}-3 t^{5}\right) \\
& =\mathrm{d}\left(5 t^{3}\right)-\mathrm{d}\left(3 t^{5}\right) \\
& =5 \mathrm{~d}\left(t^{3}\right)-3 \mathrm{~d}\left(t^{5}\right) \\
& =5\left(3 t^{3-1} \mathrm{~d} t\right)-3\left(5 t^{5-1}\right) \mathrm{d} t \\
& =\left(15 t^{2}-15 t^{4}\right) \mathrm{d} t \\
\frac{\mathrm{~d} s}{\mathrm{~d} t} & =15 t^{2}-15 t^{4}
\end{aligned}
$$

This is the first derivative.
For the second derivative, I continue:

$$
\begin{aligned}
\mathrm{d} s / \mathrm{d} t & =15 t^{2}-15 t^{4} ; \\
\mathrm{d}(\mathrm{~d} s / \mathrm{d} t) & =\mathrm{d}\left(15 t^{2}-15 t^{4}\right) \\
& =\mathrm{d}\left(15 t^{2}\right)-\mathrm{d}\left(15 t^{4}\right) \\
& =15 \mathrm{~d}\left(t^{2}\right)-15 \mathrm{~d}\left(t^{4}\right) \\
& =15\left(2 t^{2-1} \mathrm{~d} t\right)-15\left(4 t^{4-1} \mathrm{~d} t\right) \\
& =\left(30 t-60 t^{3}\right) \mathrm{d} t \\
(\mathrm{~d} / \mathrm{d} s)^{2} t=\frac{\mathrm{d} s / \mathrm{d} t}{\mathrm{~d} t} & =30 t-60 t^{3}
\end{aligned}
$$

This is the second derivative.
3.3.31 Since y is given as a function of x, the derivative that we want is $\mathrm{d} y / \mathrm{d} x$.

$$
\begin{aligned}
y & =x^{3} \mathrm{e}^{x} \\
\mathrm{~d} y & =\mathrm{d}\left(x^{3} \mathrm{e}^{x}\right) \\
& =\mathrm{e}^{x} \mathrm{~d}\left(x^{3}\right)+x^{3} \mathrm{~d}\left(\mathrm{e}^{x}\right) \\
& =\mathrm{e}^{x}\left(3 x^{3-1} \mathrm{~d} x\right)+x^{3}\left(\mathrm{e}^{x} \mathrm{~d} x\right) \\
& =\left(3 x^{2} \mathrm{e}^{x}+x^{3} \mathrm{e}^{x}\right) \mathrm{d} x \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =x^{3} \mathrm{e}^{x}+3 x^{2} \mathrm{e}^{x}=x^{2}(x+3) \mathrm{e}^{x}
\end{aligned}
$$

3.6.21 We have $y=\mathrm{e}^{u}$, where $u=-5 x$. Since I do things in terms of differentials, this is all automatic.

$$
\begin{aligned}
y & =\mathrm{e}^{-5 x} ; \\
\mathrm{d} y & =\mathrm{d}\left(\mathrm{e}^{-5 x}\right) \\
& =\mathrm{e}^{-5 x} \mathrm{~d}(-5 x) \\
& =\mathrm{e}^{-5 x}(-5 \mathrm{~d} x) \\
& =-5 \mathrm{e}^{-5 x} \mathrm{~d} x ; \\
\frac{\mathrm{d} y}{\mathrm{~d} x} & =-5 \mathrm{e}^{-5 x}
\end{aligned}
$$

3.6.87.e First,

$$
\frac{\mathrm{d}(f(g(x)))}{\mathrm{d} x}=\frac{\mathrm{d}(f \circ g)(x)}{\mathrm{d} x}=(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x) .
$$

Alternatively,

$$
\frac{\mathrm{d}(f(g(x)))}{\mathrm{d} x}=\frac{f^{\prime}(g(x)) \mathrm{d}(g(x))}{\mathrm{d} x}=\frac{f^{\prime}(g(x)) g^{\prime}(x) \mathrm{d} x}{\mathrm{~d} x}=f^{\prime}(g(x)) g^{\prime}(x)
$$

Either way, when $x=2$, then

$$
f^{\prime}(g(x)) g^{\prime}(x)=f^{\prime}(g(2)) g^{\prime}(2)=f^{\prime}(2)(-3)=-3(1 / 3)=-1 .
$$

