1 Evaluate

$$
\lim _{x \rightarrow 4}\left(\frac{x^{2}-16}{x-4}\right) .
$$

2 Evaluate

$$
\lim _{y \rightarrow-\infty}\left(y^{3}+5\right)
$$

3 Evaluate

$$
\lim _{x \rightarrow 2^{+}}\left(\frac{x^{2}-2}{x-2}\right)
$$

4 Evaluate

$$
\lim _{t \rightarrow \infty}\left(t^{1 / t^{2}}\right)
$$

5 Given

$$
f(x)=x^{2}
$$

use the definition of the derivative as a limit to calculate $f^{\prime}(3)$.
6 Given

$$
y=3(x-4)^{2}
$$

find the derivative of y with respect to x.
7 Given

$$
x=\sqrt{t^{2}-1}
$$

find the derivative of x with respect to t.
8 Given

$$
5 x+6 y=x^{5}+y^{2},
$$

find the derivative of y with respect to x.
9 Given

$$
p=\mathrm{e}^{q} \ln q
$$

find the derivative of p with respect to q.
10 Given

$$
y=\frac{\cos x}{\arctan x}
$$

find the derivative of y with respect to x.

11 Given

$$
g(x)=\frac{x+4}{x-1},
$$

find g^{\prime}.
12 Given

$$
f(x)=4 x^{3}+2 x^{2},
$$

find $f^{\prime \prime}$.
13 Given

$$
g(x)=\sqrt{400-x^{2}}
$$

find the maximum and minimum values of g, if they exist.

14 Given

$$
f(x)=x^{4}+20 x^{3}+100 x^{2}
$$

sketch a graph of f.
15 Find the sum

$$
\sum_{i=1}^{100} i^{2}
$$

16 Find the value of

$$
\int_{0}^{4}\left(2 x^{3}+3 x^{2}-5\right) \mathrm{d} x .
$$

17 Given

$$
f(x)=x \sqrt{x^{2}+1}
$$

find the antiderivatives (indefinite integrals) of f.
18 Find the value of

$$
\int_{1}^{4}\left(\frac{1}{x+1}+\mathrm{e}^{2 x}\right) \mathrm{d} x
$$

19 Find the area bounded by the graphs of these equations:

$$
\begin{aligned}
& y=x^{3} \\
& y=x^{2}
\end{aligned}
$$

20 Set up an integral whose value is the length of the curve with equation

$$
y=2 \sqrt{1-x^{2}}
$$

from $(x, y)=(0,2)$ to $(x, y)=(1,0)$.
Page 2 of 3

21 The population of a certain city is given approximately by

$$
C=3 t^{2}+1
$$

where C is the city's population in thousands and t is the time in years since the city was founded. Five years after the city was founded, how fast (at what rate) is its population growing?

22 Refer to the previous question. The population of the city's metropolitan area is given approximately by

$$
M=C+\frac{1}{8} t C
$$

where M is the metropolitan population in thousands. Five years after the city was founded, how fast is the population of its metropolitan area growing?

23 Suppose that a ball thrown into the air has its height given by

$$
h=6+5 t-16 t^{2},
$$

where h is its height in feet and t is the time in seconds since it was thrown (at least when h is positive). How long after it was thrown is it at its maximum height?

24 Refer to the previous question. What is the ball's maximum height?
25 Refer to the previous questions. What is the ball's minimum height?

