2.5.13 This function is continuous wherever it's defined, and it's defined whenever $x-2 \neq 0$, which is

$$
x \neq 2
$$

2.5.29 If $x \neq 3$, then

$$
g(x)=\frac{x^{2}-x-6}{x-3}=\frac{(x+2)(x-3)}{x-3}=x+2
$$

if $x=3$, then

$$
g(x)=5=3+2=x+2 .
$$

So either way,

$$
g(x)=x+2,
$$

which is continuous everywhere.

