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Wel
ome to Cal
ulus! Here are my supplemental notes for one-variable Cal
ulus, giving alternative ways

to think about some things, pra
ti
al advi
e, and sometimes more theoreti
al detail.

This does not 
over everything that you need to know; you should also have the o�
ial 
ourse text-

book, whi
h is the 3rd Edition of University Cal
ulus: Early Trans
endentals by Hass et al published by

Addison�Wesley (Pearson). There are also some referen
es in these notes to that textbook. Conversely,

there is some material in here that you don

′
t need to know, although I hope that it will be helpful; I ll

generally make a note of that when it happens.

For Cal
ulus 2 (Math-1700), there is an additional set of notes on multivariable Cal
ulus, whi
h I

will hand out later in that 
lass.
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1 Preliminaries

Before beginning this 
lass, you should be familiar with the basi
 algebrai
 properties of real numbers and

real-valued fun
tions of real numbers.

1.1 Numbers

By default, all of the numbers that we work with will be real numbers. (Most of Cal
ulus applies just as

well to 
omplex numbers, but a 
omplete understanding of Cal
ulus in even one 
omplex variable requires

some ideas from multivariable Cal
ulus, whi
h these notes do not 
over.) In parti
ular, if a is a negative

number, then

n
√
a is unde�ned when n is an even integer and negative when n is an odd integer. More

generally, if a is a negative number, then ap is de�ned only if p is a rational number whose denominator in

lowest terms is odd; in this 
ase, ap is positive if the numerator of p is even and negative if the numerator

of p is odd. Note that (a2)
1/2

=
√
a2 = |a|, while a2·1/2 = a1 = a, whi
h is di�erent when a is negative, so

the rule that (ax)
y
= axy does not hold in general (although it does hold when a is a positive number).

Although 0x is unde�ned whenever x is negative (be
ause this amounts to dividing by zero), we need

to de�ne 00 = 1 in order to make some formulas work 
orre
tly. Although the textbook says that 00 is un-

de�ned, this 
ontradi
ts some things that that book says about polynomials and power series. (Se
tion 9.7

of the o�
ial textbook, beginning with the de�nition of power series on page 523, is the �rst pla
e where

this is important; see also the dis
ussion of power series starting on page 46 in these notes.) It s possible

to take a more nuan
ed approa
h, where 0x is 1 when x is an integer -valued variable with the value 0
while 0x is unde�ned when x is a real -valued variable with the value 0; however, this makes the meaning

of 00 ambiguous without 
ontext, so for simpli
ity, I prefer to just say that 00 = 1. Nevertheless, this will
require some 
are when it 
omes to rules for evaluating limits.

When we use trigonometri
 operations, they will always apply to angle measures in radians. A
tually,

it s best to think of these as operations on pure numbers, with the geometri
 appli
ation to angles as just

one use of them. So sinx and cosx are de�ned for any real number x, sin (x+ 2π) is always the same as

sinx, et
. Also, for the inverse trigonometri
 fun
tions, I write asinx for the unique real number su
h that

−π/2 ≤ asinx ≤ π/2 and sin (asinx) = x (if there is any su
h number at all, whi
h there will be if and

only if −1 ≤ x ≤ 1); this number is also variously written arcsinx, Sin−1 x, or (as in the textbook) sin−1 x.
Note that I also use −π/2 ≤ acscx ≤ π/2; some Cal
ulus textbooks do this di�erently, but I am agreeing

with our o�
ial textbook in this respe
t.

The main di�eren
e between my approa
h to Cal
ulus and the textbook s is that I make more use

of di�erentials. Cal
ulus was originally developed using di�erentials, and many 
al
ulations are easier to

do this way. Furthermore, di�erentials are often used in appli
ations, espe
ially (but not only) to phys-

i
s. They fell out of fashion with mathemati
ians towards the end of the 19th 
entury, when Cal
ulus was

�rst put on a rigorous logi
al foundation, be
ause this foundation did not in
lude di�erentials. However, a

rigorous logi
al development of di�erentials as well had been a
hieved by the early 20th 
entury, so there

is no longer any reason to avoid them. You 
an do almost everything with the textbook s methods if you

want, but I en
ourage you to try using di�erentials. (This will be espe
ially fruitful if you go on to take

multivariable Cal
ulus, where di�erentials are even more 
onvenient.)

A related (but distin
t) issue is the question of in�nitely small (but nonzero) numbers. We say that a

number is in�nitely small, or in�nitesimal , if its absolute value is less than 1, less than 1/2, less than 1/3,
et
. In the real number system as we now understand it, the only in�nitely small number is 0; however, in
the early days of Cal
ulus, people reasoned in terms of nonzero in�nitesimal numbers (and their re
ipro-


als, whi
h are in�nitely large numbers) quite often. I will dis
uss this o

asionally, be
ause they 
an be

useful for intuitive understanding, but this is entirely optional; I ll make no attempt at a 
omplete or rig-

orous dis
ussion of su
h numbers, although I ll try to make sure that everything that I say about them is

at least true. (In�nitesimal numbers were the last 
on
ept to be made fully rigorous, but even so, this was

done in 1960, probably well before any of us was born.)
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1.2 Sets

Geometri
ally, a set of real numbers is a region within the number line; for ea
h number c, you should be

able to say (in prin
iple) whether c is in the set or not. That is, if c is a number and A is a set, then c ∈ A
is a statement that may be true or false. When it is true, we say that c is an element and member of A,
that c belongs to A, and that A owns c. Although one 
an talk about sets whose elements are anything at

all (even other sets) rather than just real numbers, the default meaning of `set' in this 
lass is a set of real

numbers. Note that both the entire real line (written R, R, or (−∞,∞)), whi
h owns every real number,

and the empty set (written ∅ or {}), whi
h owns nothing at all, 
ount as the extreme examples of sets of

real numbers.

In general, you 
an de�ne a set by pi
king a variable (say x) to stand for an arbitrary real number

and writing down a statement about that number (using that variable) so that x belongs to the set if and

only if the statement is true. For example, you might de�ne a set A by saying that, for ea
h real num-

ber x, x ∈ A if and only if x < 2. (Note that `if and only if' goes both ways: if x ∈ A, then x < 2; and if

x < 2, then x ∈ A.) You 
an write this as A = {x | x < 2}, or {x ∈ R | x < 2} to emphasize that it s a

set of real numbers. Or if you don t want to give the set a name like A, then you 
an refer to the set di-

re
tly as {x | x < 2}. Then given any real number c, c ∈ {x | x < 2} if and only if c < 2. For example,

1 ∈ {x | x < 2}, be
ause 1 < 2; but 3 /∈ {x | x < 2}, be
ause 3 ≮ 2 (where the slashes indi
ate that some-

thing is not true).

Besides this, we will often have to deal with intervals, whi
h are parti
ular sets of real numbers, so

there is a spe
ial notation for them. If a and b are real numbers with a < b, then [a, b], [a, b), (a, b], and
(a, b) are all sets (the intervals from a to b, or with a and b as endpoints), 
onsisting of all of the numbers

stri
tly between a and b, as well as possibly the endpoints a and b themselves; an endpoint belongs to the

interval if the bra
ket on that side is square but not if it is round. We 
an also use −∞ in pla
e of a or ∞
in pla
e of b (or both), to indi
ate that the interval 
ontinues forever in that dire
tion; but be
ause −∞
and ∞ are not real numbers, the bra
kets next to them must always be round. In other words:

[a, b] = {x | a ≤ x ≤ b}; [a, b) = {x | a ≤ x < b}; [a,∞) = {x | x ≥ a};
(a, b] = {x | a < x ≤ b}; (a, b) = {x | a < x < b}; (a,∞) = {x | x > a};

(−∞, b] = {x | x ≤ b}; (−∞, b) = {x | x < b}; (−∞,∞) = R.

We 
all [a, b], [a,∞), (−∞, b], and (−∞,∞) 
losed intervals; they in
lude all of the endpoints that they


an. Conversely, we 
all (a, b), (a,∞), (−∞, b), and (−∞,∞) open intervals; they in
lude none of their

endpoints. (Noti
e that [a, b) and (a, b] are neither open nor 
losed, while (−∞,∞) is both.) Also, the in-

tervals that don t involve any kind of in�nity are 
alled bounded intervals. In parti
ular, the 
losed bound-

ed intervals of the form [a, b] are 
alled 
ompa
t intervals. These will all be useful notions from time to

time.

Although I said above that a < b for the endpoints of an interval, we also allow a = b for 
ompa
t in-

tervals; however, [a, a] is more 
ommonly written simply {a}; that is, 
urly bra
kets with the single ele-

ment a listed within them. (If there are more elements, then you 
an list these separated by 
ommas, but

then the set will no longer be an interval.) If you re talking about a 
ompa
t interval [a, b] and want to

ensure that a < b, then you 
an speak of a nontrivial 
ompa
t interval. This is usually just a te
hni
ality,

however.

1.3 Fun
tions

Another di�eren
e between these notes and the textbook is that I will never be sloppy with fun
tion nota-

tion.

In an expression su
h as

y = f(x),

the variables x and y stand for real numbers, while the variable f stands for a fun
tion. (Usually this vari-

able is a
tually a 
onstant, be
ause f always refers to the same fun
tion throughout the problem, although

there 
an also be situations where the fun
tion itself is allowed to vary.) A fun
tion is not a number but
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rather a pro
ess for turning one number into another. When speaking of spe
i�
 numbers, this is usual-

ly not a problem; for example, f(2) = 4 means that the fun
tion f is a pro
ess that (among other things)

turns the number 2 into the number 4.
The statement that f(x) = x2

is more ambiguous; in a 
ontext where the variable x already appears,

this means that the fun
tion f is a pro
ess that (among other things) turns the number x (whatever num-

ber that is) into the number x2
. But in a 
ontext where x does not already have a meaning, this state-

ment usually means that the fun
tion f is a pro
ess that turns every real number into its square, whi
h is

a 
omplete des
ription of the fun
tion. In this 
ase, it is better to say something like

f(x) = x2
for all x,

and I will usually say something like this.

Another way to 
ompletely des
ribe this fun
tion is to write

f = (x 7→ x2).

This is analogous to de�ning a set S as S = {x | x > 2}; in ea
h 
ase, you introdu
e a new dummy variable

and then you either give an expression (to de�ne a fun
tion) or else you give an equation, inequality, or

other statement (to de�ne a set), in ea
h 
ase using that dummy variable. You 
an even do this without

giving the fun
tion (or set) a name, by (for example) just referring to the fun
tion (x 7→ x2) or the set
{x | x > 2}; this is 
alled anonymous fun
tion notation. Although the textbook does this with sets, it

never does this with fun
tions; so I won t do it mu
h either. It 
an be very handy, however.

The real problem is when the same symbol is used both to refer to a fun
tion and to its output value,

as in

A = A(x),

whi
h you might see (for example) in a problem in whi
h the area of some shape depends on something

else. I will never do this! Either I will use A to refer to the area itself, or I will use A to refer to the fun
-

tion that indi
ates how this area depends on x (whatever that may be in this situation), but I will not use

the same symbol for both of these. If I need to refer to both of these, then I will use two di�erent sym-

bols. Most of the time, however, it s enough to have a symbol for the area itself and to leave the fun
tion

unnamed. (The evaluation notation des
ribed on page 6 
an help with this.)

When we 
over derivatives later on, you will learn various symbols used for this 
on
ept; and when

y = f(x), then I will also write

dy

dx
= f ′(x).

(What this means is explained on page 14.) The textbook will sometimes write y′ or df/dx in this situa-

tion, but I never will, and this is important to ensure that the ordinary rules of algebra 
ontinue to apply

to su
h expressions. (For example, you 
an multiply both sides of the equation above by dx to get dy =
f ′(x) dx, whi
h would be di�
ult to do 
orre
tly using the wrong symbols.) I will not 
ount it against

you if you are as sloppy as the textbook about this, be
ause I don t think that it s fair to require you to

do more than the textbook writers do; however, if you get 
onfused by your notation and make a mistake,

then that will 
ount against you! So I en
ourage you to use pre
ise notation.

1.4 Variables

In Cal
ulus, we study variable quantities, that is quantities whose values may vary (or 
hange).

In Algebra, we often use the word `variable' to refer to any quantity whose value we don t know, even

if this value is �xed and never 
hanges throughout the problem. In fa
t, the standard Algebra problem,

solving an equation su
h as 2x+ 3 = 5, involves �guring out the value of the variable; so it had only one

value all along, and we just had to �gure out what it was. So if x is a variable in an Algebra problem, and

at some point we de
ide that the value of x is 1, then this may well mean that x is 1 throughout the entire

problem. (That s not always the 
ase in Algebra, but it often is.)
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In Cal
ulus, we take the word `variable' more seriously. If x is a variable in a Cal
ulus problem, then

x might be 1 at some point, but it will probably be 6 at some other point in the problem. (And more of-

ten than not, it will take all of the values in between 1 and 6 along the way, su
h as 1 1
2 , π, and 5.789.)

Furthermore, if x and y are two variables that appear in the same problem, then the value of y will usual-

ly 
hange as the value of x 
hanges. Cal
ulus is primarily about exa
tly this sort of thing: how one quan-

tity 
hanges as another quantity 
hanges.

In the simplest 
ases, it turns out that y is a fun
tion of x; that is, there is a �xed fun
tion f su
h

that y = f(x) remains true as x and y vary. Cal
ulus textbooks generally try to �t everything into this

mould, but it doesn t always 
ome out like this naturally. Often, you know that both x and y are 
hang-

ing, but it s not obvious that the value of x at some point is enough information to �gure out the value

of y at that point; yet when you write y = f(x), you re assuming that it is enough information.

Nearly all of the time, however, we 
an assume that there is some variable t, 
alled the independent

variable, su
h that every other variable in the problem is a fun
tion of t. That is, if x and y appear in the

problem, then there are �xed fun
tions g and h su
h that x = g(t) and y = h(t) throughout the problem.

(Then x and y are 
alled dependent variables, sin
e their values depend on the values of t, through the

fun
tions g and h.) If it also happens that y = f(x) throughout the problem, then this means that h is the


omposite fun
tion f ◦ g; but if that doesn t happen, then at least we still have g and h.
However, this variable t might not show up dire
tly! Cal
ulus books will usually tell you (espe
ially in

word problems) that it s ne
essary to pi
k an independent variable from among the variables that appear

in the problem, but really it s enough to informally visualize the range of variation in the problem, and

you 
an treat all of the variables on an equal footing. All the same, for the sake of formal de�nitions, I

will assume that there is an independent variable t and that every other variable is a fun
tion of it, even

though in pra
ti
e we don t have to identify it. (Of 
ourse, you don t have to 
all the independent variable

`t', but I usually will, just to have a 
onsistent name.)

If we re not going to refer dire
tly to t, then we re not going to refer dire
tly to g and h either, only to

the quantities x and y; so we need some way to refer to the values of these quantities without referring to

the fun
tions that determine them. Here is how we do it formally:

If u = f(t), then u|t=c = f(c).

(This is 
alled evaluation notation.) More generally, if P is some statement that is only true on
e, then

P implies the statement t = c for some value of c, so we 
an make sense of u|P . Even if P is a statement

that might not only be true on
e, as long as every possible value of u|P is the same, then we 
an still make

sense of u|P . Finally, even if there are di�erent possible values of u|P , then the value of u|P still varies,

but at least it doesn t vary as mu
h as u itself, sin
e there are now fewer possibilities.

This all sounds very abstra
t (be
ause it is), but the 
on
rete appli
ation is straightforward; here are

some examples:

x|x=5 = 5,

(2x+ 3)|x=4 = 2(4) + 3 = 11,

(2x+ 3y)|x=4,
y=5

= 2(4) + 3(5) = 23.

Taking the last of these for example, there is no need to think about what t is when x = 4 and y = 5, and
indeed without 
onsidering how x and y depend on this unspe
i�ed independent variable t, the value of t
is impossible to know. Nevertheless, we know that no matter what t may be, if x = 4 and y = 5 at that

value of t, then u = 2x+ 3y is de�nitely 2(4) + 3(5) = 23 at that same value of t, and that is enough. So

all that you have to do in pra
ti
e is to plug in the given values and perform the given 
al
ulation.

Sometimes (generally only in the middle of a problem or in something theoreti
al) you 
an t work out

the value 
ompletely; for example,

(2x+ 3y)|x=4 = 2(4) + 3(y|x=4) = 8 + 3y|x=4.

If we don t know anything more about the relationship between x and y, then we don t know the value

of y when x = 4, so this is all that we 
an say in this example, but at least we were able to work out part

of it.
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1.5 Completeness of the real line

In this 
ourse, we work with the real numbers, whi
h are supposed to 
orrespond to points on a number

line. Ultimately, all of the properties of real numbers derive from intuitive geometri
 properties of points

on a line. For example, the arithmeti
 operations of addition, subtra
tion, multipli
ation, and division 
an

be de�ned in terms of 
hanges of position and s
ale on the number line. The order relation between real

numbers (< and >) also derives from relative position on a line. (You have to spe
ify the numeri
al values

of at least two points, su
h as 0 and 1, in order to make a geometri
 line into a number line, but on
e you

have those two points, then everything else follows.)

The most advan
ed of the fundamental properties of the number line is its 
ompleteness. There are

many ways to express 
ompleteness, but my favourite is this:

If you pi
k out two nonempty regions of the number line, one on the left 
alled L and one on the

right 
alled U , whi
h don t overlap but otherwise 
annot be extended further, then there is a sin-

gle point between them, 
alled cut (L,U), the 
ut between L and U .

oo L

cut (L,U)

U //•

We 
an make this logi
ally pre
ise (in terms of the order relation on real numbers): Suppose that L and U
are two sets of real numbers (making pre
ise what regions of the number line are), with these properties:

• There is some r ∈ L and some s ∈ U (whi
h is what it means for L and U to be nonempty);

• If r ∈ L and s ∈ U , then r < s (whi
h is what it means for L to be on the left and U on the right

without overlapping);

• If r < s, then r ∈ L or s ∈ U (whi
h is what it means to say that L and U 
annot be extended fur-

ther).

(Note that `or' in math, as here, normally in
ludes the possibility of both.) Then there exists a real num-

ber cut (L,U) with this property:

• If r ∈ L and s ∈ U , then r ≤ cut (L,U) ≤ s (whi
h is what it means for cut (L,U) to be between L
and U).

A 
ouple more important properties follow from what was said above:

• The number cut (L,U) is the only real number between L and U ;
• If r < cut (L,U) < s, then r ∈ L and s ∈ U .
The point of all this is to be able to prove that a real number exists. For example, in order to prove

rigorously that every real number c has a 
ube root

3
√
c (and has anybody ever showed you why this is

true or did you just take it on faith?), you �rst de�ne L as {x | x3 < c} and U as {x | x3 > c}, 
he
k that

L and U have the ne
essary properties listed above (whi
h takes a bit of work with algebra), 
on
lude that

cut (L,U) exists with the properties listed above, and 
he
k (using those properties) that cut (L,U)
3
= c

(whi
h takes a lot more work with algebra). Thus, this 
ut is the 
ube root

3
√
c.

This method of proving that a real number exists is also pra
ti
al, be
ause it shows us how to ap-

proximate its value as 
losely as we like. For example, to approximate

3
√
2 to 4 de
imal pla
es, you look

at some nearby possibilities, su
h as 1.0001, 1.0002, 1.0003, . . . , 1.9997, 1.9998, 1.9999. Somewhere in this

list are two numbers right next to ea
h other, one of whi
h has a 
ube less than 2 (so it s in L) and one

of whi
h has a 
ube greater than 2 (so it s in U). Then we approximate

3
√
2 to 4 de
imal pla
es by say-

ing that it s in between these two numbers. (As it happens, these two numbers are 1.2599 and 1.2600; al-
so, 1.259953 > 2, so 3

√
2 rounds to 1.2599.) There are more e�
ient ways to 
al
ulate 
ube roots (su
h as

Newton s Method, des
ribed on page 24), but this proof that they exist at least gives one way to 
al
ulate

them, to start with.

I will only have to refer to this property of real numbers o

asionally, when explaining why some num-

ber exists. The main point is that you know that a number exists if you 
an approximate it as 
losely as

you like, the way that I approximated

3
√
2 to 4 de
imal pla
es. Che
king all of the detailed requirements is

not usually really ne
essary to understand what s going on.
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2 Limits and 
ontinuity

There are four main operations 
onsidered in Cal
ulus: limits, derivatives (or di�erentials), integrals (or

antidi�erentials), and sums of in�nite series. (The last of these is only 
overed in Cal
ulus 2.) Here we will

look at the �rst one: limits. These are also 
losely related to the 
on
ept of 
ontinuity, whi
h is a
tually

the easiest 
on
ept to de�ne.

2.1 Continuity

In Cal
ulus, we not only study variable quantities; we study quantities that are 
ontinuously varying. This

implies in parti
ular that a quantity y that varies from 1 to 6 will pass through 1 1
2 , π, and 5.789, and ev-

erything else in between.

In real life, we 
an never measure or �x the value of a su
h a quantity y exa
tly, down to the last de
-

imal pla
e; after all, there are in�nitely many de
imal pla
es, but we 
an only do a �nite amount of work.

So, it is key to the study of real numbers that we 
an approximate them to any �nite number of de
imal

pla
es (among other ways). That is what the stu� about 
uts on page 6 a

omplishes.

Also in Cal
ulus, we study how one quantity y varies along with another quantity x. The most straight-

forward way in whi
h this 
an happen is when y is a fun
tion of x; if f is the fun
tion, then y = f(x). But
in pra
ti
e, we only know x and y approximately, so if we only use an approximate value of x, then f(x)
should still be an approximate value of y. For example, suppose that f(x) = x2

for all x; if you know that

x is approximately 2, then you know that y = f(x) is approximately 22 = 4.
This doesn t work with every fun
tion! For example, suppose that g is the pie
ewise-de�ned fun
tion

g(x) =

ß

x+ 1 for x < 2,
x+ 3 for x ≥ 2;

if you only know that x is approximately 2, then you really don t know if g(x) is approximately 2 + 1 = 3
or approximately 2 + 3 = 5. Of 
ourse, if you know that x is exa
tly 2, then you know that g(x) is 2 + 3 =
5 (exa
tly); but it s no good if you only know x approximately.

In these examples, we say that g has a dis
ontinuity at 2, while f is 
ontinuous at 2. (In fa
t, f is


ontinuous everywhere, while g is 
ontinuous everywhere ex
ept at 2.) So the idea is this:

A fun
tion f is 
ontinuous at a real number c if, whenever x ≈ c (meaning that x is approxi-

mately equal to c), f(x) ≈ f(c).

So if you only know that x ≈ c, then that s enough information to know f(x) approximately (spe
i�
ally,

that f(x) ≈ f(c)).
A
tually, we should take 
are about where f is de�ned. Sometimes Cal
ulus textbooks say that f has

a dis
ontinuity at c if f is unde�ned at c (that is if f(c) does not exist), and sometimes they don t; but in

any 
ase, f is not 
ontinuous there: f must be de�ned �rst in order to be 
ontinuous. On the other hand,

if f is unde�ned at x, then we don t hold that against f ; for example, we want to say that f(x) =
√
x is


ontinuous at 0, even though f(x) does not exist (as a real number) whenever x < 0. So a more 
areful

de�nition is this:

A fun
tion f is 
ontinuous at a real number c if f(c) exists and, whenever x ≈ c and f(x) ex-
ists, f(x) ≈ f(c).

This is still not a 
ompletely rigorous de�nition, be
ause it doesn t explain how 
lose we need to be

to say that one quantity is approximately equal to another. (Basi
ally, the answer is this: as 
lose as you

need, and as 
lose as you want.) But I will save that for a bit later. Already, this basi
 idea should be

enough to allow you to judge 
ontinuity of a fun
tion from its graph.

To judge 
ontinuity of a fun
tion from a formula, it s 
onvenient to know that any fun
tion is 
ontinu-

ous (wherever it is de�ned) if it has a formula that uses only these operations: addition, subtra
tion, mul-

tipli
ation, division, absolute values, opposites, re
ipro
als, raising to powers when the exponent is 
on-

stant or the base is always positive, extra
ting roots when the index is 
onstant or the radi
and is always
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positive, logarithms, trigonometri
 fun
tions, and inverse trigonometri
 fun
tions. These are pretty mu
h

all of the fun
tions that you ever deal with!

So, the ex
eptions in pra
ti
e are mu
h rarer: exponentiation where the exponent varies and the base


an be zero or negative, roots where the index varies and the radi
and 
an be zero or negative, and pie
ewise-

de�ned fun
tions. Of these, only pie
ewise-de�ned fun
tions are likely to 
ome up. These fun
tions 
an be


ontinuous, but only if the values agree on both sides whenever two pie
es join. So for example, while

g(x) =

ß

x+ 1 for x < 2,
x+ 3 for x ≥ 2

has a dis
ontinuity at x = 2,

h(x) =

ß

x+ 1 for x < 2,
5− x for x ≥ 2

is 
ontinuous at x = 2 (and so everywhere), be
ause 2 + 1 = 5− 2. The pre
ise theorem is that, if f and g
are fun
tions that are ea
h 
ontinuous at a number c, and if f(c) = g(c), then the pie
ewise-de�ned fun
-

tion h de�ned by

h(x) =

ß

f(x) for x < c,
g(x) for x ≥ c

(or by f(x) for x ≤ c and g(x) for x > c, be
ause this gives the same result), then h is also 
ontinuous

at c.
Returning to the meaning of 
ontinuity, how 
lose of an approximation is 
lose enough? The key to

the answer is that a real number may be approximated as pre
isely as you wish, as long as you put enough

work into it. So for f to be 
ontinuous at c, we should be able to demand that f(x) and f(c) be as 
lose
together as we like (as long as we still allow for a positive distan
e between them). But in order to a
hieve

that result, it s fair in turn to demand that x be as 
lose to c as ne
essary (again as long as we still allow

the distan
e to be positive). The distan
e between two numbers is given by subtra
ting and taking the

absolute value, so we need to be able to ensure that |f(x)− f(c)| is as small as we want (but positive) by

making |x− c| as small as we need (but positive).

The traditional symbols for these small but positive distan
es are the Greek letters `ǫ' (lower
ase Ep-
silon) and `δ' (lower
ase Delta). For this reason, this is sometimes 
alled the ǫ-δ (or epsilon-delta) de�ni-

tion; this general method of designing de�nitions and proving theorems is also 
alled epsilonti
s. So here is

the rigorous de�nition:

A fun
tion f is 
ontinuous at a real number c if f(c) exists and, for ea
h positive number ǫ (no
matter how small), there is some positive number δ (possibly quite small), su
h that whenever

|x− c| < δ and f(x) exists, |f(x)− f(c)| < ǫ.

This is fairly 
ompli
ated, but you 
an view it as a game, involving a fun
tion f and a number c su
h that

f(c) exists.
• I 
hallenge you with a positive number ǫ.
• You respond with a positive number δ.
• I reply with a value of x su
h that |x− c| < δ and f(x) exists.
• You win if |f(x)− f(c)| < ǫ.

If you 
an win this game, no matter what 
hoi
es I make, then f is 
ontinuous at c. On the other hand, if

I 
an win no matter what 
hoi
es you make, then f has a dis
ontinuity at c.
To see how this matters in pra
ti
e, suppose again that f(x) = x2

for all x and you re told that x ≈ 2;
you want to judge how pre
isely you know that x2 ≈ 4. To be spe
i�
, suppose that you want to be guar-

anteed that x2
rounds to 4 to at least 3 digits after the de
imal point, in other words that |x2 − 4| < 1

2 ×
10−3

. (That is, ǫ is 1
2 × 10−3 = 0.0005.) This means that you want x2

to be between 4− 1
2 × 10−3 = 3.9995

and 4 + 1
2 × 10−3 = 4.0005. Taking square roots (and assuming that x is positive, sin
e it s near 2), this

means that x is between

√
3.9995 ≈ 1.999 87 and

√
4.0005 ≈ 2.000 12. To be really sure that this is true,

round up the lower number and round down the upper number: x should be between 1.9999 and 2.0001.
Subtra
ting these from 2, this means that |x− 2| < 0.0001. (That is, δ is 0.0001; if the upper and lower
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estimates give you di�erent values of δ, then use the smaller one to be safe.) So if you 
an verify that x is

at least that 
lose to 2, then you 
an be 
on�dent that x2
is at least as 
lose to 4 as you need. (That f is


ontinuous at 2 means that no matter how pre
isely you need to know that x2 ≈ 4, you ll be able to per-

form a 
al
ulation like this, at least in prin
iple, to �nd out how pre
isely you need to require that x ≈ 2.)
Here are a few more de�nitions to round out the topi
; in all of these de�nitions, f is a fun
tion, c is

a number, and S is a set (of numbers).

• f is left-
ontinuous at c (or 
ontinuous at c from the left or from below) if the fun
tion

(x 7→ f(x) for x ≤ c) (that is the same as f on the interval (−∞, c] but unde�ned on the interval

(c,∞)) is 
ontinuous at c.
• f is right-
ontinuous at c (or 
ontinuous at c from the right or from above) if the fun
tion

(x 7→ f(x) for x ≥ c) is 
ontinuous at c.
• f is 
ontinuous on S if f is 
ontinuous at c whenever c ∈ S (so in parti
ular, f must be de�ned

on S).
• f is just plain 
ontinuous if f is 
ontinuous on its domain (so 
ontinuous at every number where it

is de�ned).

Left and right 
ontinuity will not 
ome up mu
h, although sometimes it is useful to know that f is 
ontin-

uous at c if and only if it is both left-
ontinuous and right-
ontinuous there.

However, the other two de�nitions above will be used often. It will be espe
ially 
ommon to say that

a fun
tion is 
ontinuous on a 
ompa
t interval [a, b]; this means that we don t 
are whether it s de�ned at

numbers less than a or greater than b and (even if it is) whether it s 
ontinuous there, but we 
are about

what is happening between (and at) a and b. (Even at a and b, we usually only 
are that the fun
tion is

right-
ontinuous at a and left-
ontinuous at b, but it would take more work to be so pre
ise, so we usually

don t bother to 
larify this.)

2.2 Dire
tions

A dire
tion in some variable des
ribes not only whether the variable is in
reasing or de
reasing (that is

its literal dire
tion on a number line) but also if there is a limiting value that it approa
hes but does not

rea
h. The basi
 dire
tions that we study in this 
ourse take the following four forms, where x may be any

variable and c may be any 
onstant:

• x → ∞: as x in
reases without bound (or as x approa
hes positive in�nity);

• x → −∞: as x de
reases without bound (or as x approa
hes negative in�nity);

• x → c−: as x in
reases towards c (or as x approa
hes c from the left, or from below);

• x → c+: as x de
reases towards c (or as x approa
hes c from the right, or from above).

Any two or more of these dire
tions may be 
ombined, but the only type of 
ombined dire
tion in the

textbook is this:

• x → c: as x approa
hes c (from either dire
tion, or even both at on
e, jumping ba
k and forth);

whi
h is the 
ombination of x → c− and x → c+. That said, other 
ombinations are also sometimes stud-

ied, espe
ially the 
ombination of x → ∞ and x → −∞, whi
h is written x → ±∞: as x approa
hes pos-

itive or negative in�nity. (You 
an also 
onsider fan
ier dire
tions, for example as x in
reases without

bound while taking only integer values, whi
h is relevant to the material in Se
tion 9.1 of the textbook and

whi
h I will get to in Chapter 6. For now, however, I ll sti
k to 
ombinations of the types of dire
tions rel-

evant to Chapter 2.)

It s sometimes 
onvenient to think of ∞ and −∞ as numbers like the real number c, only numbers of

an in�nite magnitude. Similarly, it s sometimes 
onvenient to think of c+ and c− as numbers that are in-

�nitely 
lose to (but distin
t from) the real number c. Then the meanings of the dire
tions are as follows:

• x → ∞: what happens when x is positive and in�nite?

• x → −∞: what happens when x is negative and in�nite?

• x → c−: what happens when x is in�nitely 
lose to but less than c?
• x → c+: what happens when x is in�nitely 
lose to but greater than c?
• x → c: what happens when x is in�nitely 
lose to but distin
t from c?
• x → ±∞: what happens when the absolute value of x is in�nite?
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This 
an be made rigorous, by extending the real number system to the hyperreal number system, al-

though I will not be doing that. But in any 
ase, it 
an be useful for intuition.

Ultimately, the important thing about a dire
tion is what happens eventually as you move in that

dire
tion. So for example, as x → ∞, it is eventually true that x > 0, that x > 1, that x > 2, and so on.

Besides that . . . well, that s it, really. If any statement P is true as x → ∞, then it s true be
ause there

is some �xed number M (whi
h you may assume is a whole number, although you don t have to do this)

su
h that P is true whenever x > M . For example, x2 > 4 as x → ∞, be
ause x2 > 4 whenever x > 2.
(It s also true that x2 > 4 whenever x < −2, but that s irrelevant.)

Similarly, P is true (eventually) as x → −∞ if there is some number M su
h that P is true whenev-

er x < −M . Also, P is true in the 
ombined dire
tion x → ±∞ if it is true both as x → ∞ and as x →
−∞, in other words if there is some number M su
h that P is true whenever |x| > M . Next, P is true as

x → c+ if there is some positive number δ (whi
h you may assume is 1/M for some natural number M , al-

though you don t have to do this) su
h that P is true whenever c < x < c+ δ; and P is true as x → c− if

there is some positive number δ su
h that P is true whenever c− δ < x < c. Finally, P is true as x → c if
it is true both as x → c+ and as x → c−, in other words if there is some positive number δ su
h that P is

true whenever c− δ < x < c+ δ but x 6= c (or equivalently whenever 0 < |x− c| < δ).
For example, x− 2 6= 0 as x → 2, pre
isely be
ause of the x 6= 2 bit; the point of x → 2 is that x is


lose to 2 but still distin
t from 2. You 
an t say that x− 2 > 0 as x → 2, but at least (x− 2)
2
> 0; also,

x− 2 > 0 as x → 2+. This sort of analysis allows you to simplify things as you work in parti
ular dire
-

tions.

2.3 Limits

If D is any dire
tion and u is any variable quantity, then we indi
ate the value to whi
h u approa
hes as


hange o

urs in the indi
ated dire
tion as

lim
D

u

in a diplayed equation or as limD u in running text. (The textbook likes to write u as f(x), and this is


ertainly 
onvenient when it 
omes to the formal de�nition, but in pra
ti
e you ll start with an expression

involving the variable x, and it s not ne
essary to think of this as given by a fun
tion.) We will examine

the 
ase when u approa
hes a real value L, as well as the 
ase when u in
reases without bound or de
reas-

es without bound. In the �rst 
ase, we say that the limit 
onverges; in the se
ond 
ase, we say that the

limit diverges to (positive or negative) in�nity. Other types of behaviour are also possible, whi
h are also

kinds of divergen
e, but I won t try to analyse those now.

A limit as x → c is one of the three kinds of results that we are 
onsidering if and only if the limits as

x → c+ and as x → c− are both this same result. So in total, there are �fteen kinds of limits that we will


onsider, for the �ve kinds of dire
tions (four basi
 and one 
ombined) and the three kinds of results:

lim
x→∞

u = L; lim
x→∞

u = ∞; lim
x→∞

u = −∞;

lim
x→−∞

u = L; lim
x→−∞

u = ∞; lim
x→−∞

u = −∞;

lim
x→c−

u = L; lim
x→c−

u = ∞; lim
x→c−

u = −∞;

lim
x→c+

u = L; lim
x→c+

u = ∞; lim
x→c+

u = −∞;

lim
x→c

u = L; lim
x→c

u = ∞; lim
x→c

u = −∞.

To see how to read these aloud, I ll 
onsider the last one as an example; this says that the limit, as x ap-

proa
hes c, of u is negative in�nity.

If you think of ∞ and −∞ as numbers of an in�nite magnitude, then the meanings of the results are

as follows:

• limD u = ∞: u is positive and in�nite;

• limD u = −∞: u is negative and in�nite;

• limD u = L: u is in�nitely 
lose to L (whi
h in
ludes being equal to L as a spe
ial 
ase).
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This 
an be made into a rigorous de�nition of limits using the hyperreal number system, but I will only

use it for intuition.

There are some alternative notations for limits that are worth knowing. First of all, instead of writing

limD u, you 
an also write u|D, analogous to evaluation notation (page 5). That is, u|x=c means whatever

u equals when x equals c, while u|x→c means whatever u approa
hes (or equals) when x approa
hes (but is

still distin
t from) c.
The point of a 
ontinuous fun
tion is that these are the same; that is, f is 
ontinuous at c if and only

if f(x)|x=c and f(x)|x→c both exist and are equal. Of 
ourse, instead of writing f(x)|x=c, you 
ould just

write f(c); similarly, instead of writing f(x)|x→c, there is yet another notation for this:

f(c±) = f(x)|x→c = lim
x→c

f(x).

You 
an read this as `f of c plus or minus'; the idea behind `plus or minus' here is the same as in the En-

glish phrase `more or less', meaning `approximately', be
ause we re looking at values of f near c rather
than at c. Then f is 
ontinuous at c if and only if f(c±) = f(c) (in
luding that these both exist).

The analogous notations for the other types of dire
tions are f(c−), f(c+), f(∞), and f(−∞). Sin
e
things like c+ and ∞ aren t real numbers, there should be no 
onfusion between this fun
tion-limit no-

tation and the usual fun
tion-evaluation notation f(c). Sin
e all of these alternative notations for limits

aren t in the textbook, I won t use them very mu
h, but they are good to know; they are short and handy,

and you may see them elsewhere.

2.4 De�ning limits

The simplest type of limit to de�ne is limx→c f(x). Note that this just depends on the fun
tion f and the

real number c, whi
h is espe
ially 
lear using the notation f(c±) in the previous paragraph above. If f is


ontinuous at c, then this is supposed to be f(c). But what if f is unde�ned or dis
ontinuous at c?
Given a real number L, let fc 7→L be the pie
ewise-de�ned fun
tion given by

fc 7→L(x) =
{

f(x) for x 6= c,
L for x = c.

That is, fc 7→L is almost the same fun
tion as f , ex
ept that fc 7→L(c) = L, regardless of what f(c) is (or
even whether f(c) exists in the �rst pla
e). Now here is the de�nition of the limit:

If there is a unique real number L su
h that fc 7→L is 
ontinuous at c, then L is f(c±).

Note that the limit is unde�ned if either there is no L that makes fc 7→L 
ontinuous or if there is more than

one L that makes it 
ontinuous. But that se
ond possibility is very rare; it only happens if f is unde�ned

approa
hing c, that is if f is not de�ned anywhere near c (in whi
h 
ase fc 7→L is 
ontinuous at c no matter

what L is, be
ause there is nothing nearby to 
ompare to).

What if the limit is some kind of in�nity? We 
an t talk about fc 7→∞, be
ause then fc 7→∞(c) would
have to be ∞, whi
h is not a real number. However, if f(x) is in
reasing without bound, then 1/f(x)
should be approa
hing 0. This almost allows us to de�ne when the limit is ∞; the only problem is that

1/f(x) still approa
hes 0 even if f(x) de
reases without bound as well. Still we 
an say that

lim
x→c

f(x) = ±∞ if lim
x→c

Å

1

f(x)

ã

= 0.

To �nish the de�nitions that we want, we need to spe
ify the sign of f(x) as well:

lim
x→c

f(x) = ∞ if lim
x→c

Å

1

f(x)

ã

= 0 and f(x) > 0 as x → c;

lim
x→c

f(x) = −∞ if lim
x→c

Å

1

f(x)

ã

= 0 and f(x) < 0 as x → c.
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You an also de�ne things like limx→c u = L−
and limx→c u = L+

by similar restri
tions, but we won t be

doing that.

Finally, for the general de�ntion of limD u, where D is any dire
tion and u is any expression, sup-

pose (like I did ba
k on the top of page 5) that x and u are both fun
tions of some independent variable t,
where x is the variable that appears in the dire
tion D. To be pre
ise, suppose that u = f(t) and x = g(t).
If the dire
tion D 
onsists of some additional 
ondition on the variable x, then assume that this 
ondition

holds for every value of the fun
tion g. (So for x → c−, suppose that g(t) < c always, and for x → c+, sup-
pose that g(t) > c always; even for x → c, still suppose that g(t) 6= c always.) Then if the limit of f(t) has
the same value (a real number L, ∞, or −∞) whenever the limit of g(t) is the value given by the dire
-

tion D (a real number c, ∞, or −∞), then that value for the limit of u = f(t) is the limit limD u.
(This de�nition 
overs mu
h more general 
ases than the textbook s; for example, limx→0 (±x) = 0,

be
ause whenever f(t) = ±g(t) and lim g(t) = 0, then lim f(t) = 0. Intuitively, this should be obvious,

sin
e ±x ≈ 0 whenever x ≈ 0, no matter whether it s +x or −x. But the textbook 
an t make sense of

this, te
hni
ally, sin
e ±x is not a fun
tion of x. The formal de�nition of the Riemann integral is anoth-

er 
ase where the textbook te
hni
ally 
annot write it down but I 
an.)

The textbook de�nes limits dire
tly using epsilonti
s (whi
h is very similar to the epsilonti
 de�nition

of 
ontinuity but slightly more 
ompli
ated), then de�nes 
ontinuity using limits; I have de�ned 
ontinuity

using epsilonti
s and de�ned limits using 
ontinuity. Our de�nitions 
ome in di�erent orders, but they are

equivalent (at least in the 
ases where the book gives a de�ntion at all). In any 
ase, the most important

method of 
al
ulating limits is this:

If f is 
ontinuous at c, then lim
x→c

f(x) = f(c).

This fa
t makes most limits trivial to 
al
ulate; but it s the ex
eptions where all of the interesting stu�

happens!

For example, let g be the pie
ewise-de�ned fun
tion from page 7:

g(x) =

ß

x+ 1 for x < 2,
x+ 3 for x ≥ 2;


onsider the limits of g(x) in various dire
tions. Sin
e g is 
ontinuous everywhere ex
ept at 2, it follows
that lim

x→c
g(x) is simply g(c) for every real number c other than 2. There are still a few interesting lim-

its of g(x), however: the limits as x → 2+, as x → 2−, as x → ∞, and as x → −∞. The �rst of these is

g(2) = 5, basi
ally be
ause g(x) uses the same formula when x = 2 as when x > 2; formally, it s be
ause

x+ 3 for x ≥ 2 is 
ontinuous as a fun
tion of x. (In other words, g is right-
ontinuous at 2.) The next

one, the limit as x → 2−, is 3, even though g(2) 6= 3 (so g is not left-
ontinuous at 2). But the reason for

this limit is essentially the same as the reason for the previous limit; it is that x+ 1 for x ≤ 2 is 
ontinu-

ous as a fun
tion of x. Next, the limit as x → ∞ is ∞, be
ause if x is positive as 1/x → 0, then x+ 3 is

positive and 1/(x+ 3) → 0, or going down to an even more basi
 level, be
ause 1/(1/t+ 3) simpli�es to

t/(1 + 3t), whi
h is 
ontinuous, positive when t is positive, and 0 when t is 0. Finally, the limit as x →
−∞ is −∞, for essentially the same reason, but now using 1/(1/t+ 1) and looking at negative values.

(This time, 1/(1/t+ 1) 
an be positive even when t is negative, but not when t is su�
iently 
lose to 0,
whi
h is what matters.)

The analysis in the previous paragraph is somewhat ad ho
, showing how you would work dire
tly

from the de�nitions. The next se
tion is about qui
k methods, but it will still be useful to think about

what happens in various dire
tions.

2.5 Cal
ulation te
hniques

Here I dis
uss the pra
ti
al aspe
ts of 
al
ulating limits.

The �rst fa
t to know about 
al
ulating limits is that the limit of the variable itself is already given

by the dire
tion:

lim
x→c−

x = c, lim
x→c+

x = c, lim
x→c

x = c, lim
x→∞

x = ∞, lim
x→−∞

x = −∞.
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A similarly important prin
iple is that the limit of a 
onstant, in any dire
tion, is that 
onstant:

lim
D

C = C.

Of 
ourse, we rarely bother with limits as simple as these! However, we have the powerful prin
iple that if

an expression is built using only the usual operations,* then the limit of the expression may be 
omputed

using these operations.

Expli
itly, ea
h of these equations is true whenever the right-hand side is de�ned (so that in parti
u-

lar the left-hand side is automati
ally also de�ned), so long as n is 
onstant and limD w is positive:

lim
D

(u+ v) = lim
D

u+ lim
D

v; lim
D

(u− v) = lim
D

u− lim
D

v;

lim
D

(uv) = lim
D

u · lim
D

v; lim
D

(u/v) =
limD u

limD v
;

lim
D

(−u) = − lim
D

u; lim
D

(|u|) =
∣

∣

∣
lim
D

u
∣

∣

∣
;

lim
D

(un) =
(

lim
D

u
)

n
; lim

D
(wu) =

(

lim
D

w
)

limD u
;

lim
D

( n
√
u) = n

√

lim
D

u; lim
D

(logv u) = loglimD v

(

lim
D

u
)

;

lim
D

(sinu) = sin
(

lim
D

u
)

; lim
D

(cosu) = cos
(

lim
D

u
)

;

lim
D

(tanu) = tan
(

lim
D

u
)

; lim
D

(cotu) = cot
(

lim
D

u
)

;

lim
D

(secu) = sec
(

lim
D

u
)

; lim
D

(cscu) = csc
(

lim
D

u
)

;

lim
D

(asinu) = asin
(

lim
D

u
)

; lim
D

(acosu) = acos
(

lim
D

u
)

;

lim
D

(atanu) = atan
(

lim
D

u
)

; lim
D

(acotu) = acot
(

lim
D

u
)

;

lim
D

(asecu) = asec
(

lim
D

u
)

; lim
D

(acscu) = acsc
(

lim
D

u
)

.

In this way, we 
an evaluate most limits.

We 
an do even more limits if we extend arithmeti
 to the values ±∞ as follows, where a is (in gener-

al) any real number or ±∞:

a+∞ = ∞+ a = ∞ if a > −∞; a−∞ = −∞+ a = −∞ if a < ∞;

a · ∞ = ∞ · a = ∞ if a > 0; a · ∞ = ∞ · a = −∞ if a < 0;

−∞ · a = −(∞ · a); a÷±∞ = 0 if −∞ < a < ∞;

∞a = ∞ if a > 0; (±∞)
a
= 0 if a < 0;

a∞ = ∞ if a > 1; a∞ = 0 if − 1 < a < 1;

a−∞ = 0 if |a| > 1; a−∞ = ∞ if 0 ≤ a < 1;
a
√
∞ = ∞ if 0 < a < ∞;

∞√a = 1 if 0 < a < ∞.

Rather than memorizing all of these, it is usually enough to think to yourself what happens if a given

number be
omes arbitrarily large.

* Addition, subtra
tion, multipli
ation, division, absolute values, opposites, re
ipro
als, raising to pow-

ers when the exponent is 
onstant or the base is always positive, extra
ting roots when the index is 
on-

stant or the base is always positive, logarithms, trigonometri
 operations, and inverse trigonometri
 opera-

tions, the same as the list of 
ontinuous operations spanning pages 6 and 7
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Finally, we 
an even divide by zero sometimes, if we are 
omputing limits!

lim
D

(u/v) = ∞ if lim
D

u > 0, lim
D

v = 0, and v > 0;

lim
D

(u/v) = −∞ if lim
D

u > 0, lim
D

v = 0, and v < 0;

lim
D

(u/v) = −∞ if lim
D

u < 0, lim
D

v = 0, and v > 0;

lim
D

(u/v) = ∞ if lim
D

u < 0, lim
D

v = 0, and v < 0.

In other words, if v → 0 with a 
onsistent sign, then the limit of u/v is plus or minus in�nity, depending

on how the sign of v 
ompares to the sign of u, as long as u approa
hes something other than 0.
However, this tells us nothing if u → 0 too; in other words, if you work out the limit as far as 0/0.

The same goes for expressions involving in�nity su
h as ∞−∞, 0 · ∞, ∞÷∞, ∞0
, and 1∞, none of whi
h

is handled by the rules on page 13. Additionally, the rule for limD (wu) requires that limD w > 0; but even
if w > 0 in the dire
tion D, it s still possible to have limD w = 0. In this 
ase, it s best to look at 1/w
(whose limit is in�nite) instead, but the form 00 
annot be treated in this way. These are all 
alled in-

determinate forms.

To handle an indeterminate form, people typi
ally use an advan
ed te
hnique su
h as L H�opital s Rule

(page 25) or expansion into power series (page 50). However, you 
an often manipulate the expression al-

gebrai
ally to get something that works.

While I m at it, here is another rule, 
alled the Chain Rule for limits: If limD u is a real number and

f is 
ontinuous there, then

lim
D

f(u) = f
(

lim
D

u
)

.

(Compare the Chain Rule for di�erentials in Se
tion 3.3 below.) This is not something that you ll use di-

re
tly if you have all of the rules on page 13, but you might need it in a more theoreti
al situation where

you don t know what fun
tion f is (but you still know that it s 
ontinuous).
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3 Di�erentiation

The single most important topi
 in Cal
ulus is probably di�erentiation. Whereas limits tell us where a

quantity is going as it 
hanges, di�erentiation tells us how qui
kly the quantity is 
hanging. Te
hni
ally,

the question answered by limits does 
ome up more often, but it s also trivial to solve in the vast majority

of pra
ti
al 
ases (when the variable is given by a 
ontinuous fun
tion); it may not seem that way while

you re doing the problems, but that s just be
ause we re fo
ussing on the ex
eptions. Di�erentiation, how-

ever, is rarely trivial. That said, it is also rarely di�
ult; you just need to learn the rules.

A word about notation: As I remarked earlier (on page 3), when y = f(x), we 
an write dy/dx =
f ′(x); both sides of the latter equation are notation for a derivative, whi
h is one of the things that dif-

ferentiation produ
es. The left-hand side means the derivative of y with respe
t to x, while f ′
in the right-

hand side is a fun
tion whi
h is the derivative of the original fun
tion f . To say that the derivative of f is

f ′
suggests that the derivative is a basi
 
on
ept, not a 
ombination of anything more 
ompli
ated, and

that is how the textbook approa
hes derivatives. But the left-hand side suggests that a derivative is a

ratio, the result of dividing dy by dx, and this is how they were originally used. As for dy and dx them-

selves, they are the di�erentials of y and x; a di�erential is another thing that di�erentiation produ
es.

I will start with an intuitive des
ription of di�erentials, then turn to derivatives for a pre
ise de�ni-

tion, then ba
k to di�erentials to tie it all together. (Then I ll bring up some appli
ations and the like.)

3.1 Di�eren
es

I ll introdu
e di�erentials by starting with a related 
on
ept that 
an be done with pure Algebra. If a vari-

able quantity x 
hanges from the value a to the value b, then the di�eren
e between these two values is

∆x = b− a. (The triangle here is an upper
ase Greek letter Delta, so ∆x is often read `Delta Ex', but you


an also pronoun
e `∆' as `di�eren
e' or `
hange in'.) More generally, as x 
hanges from a to b, some oth-

er quantity u may 
hange as well, although (usually) between di�erent values. Whatever the di�eren
e in

those values is, that is the di�eren
e in u when x is a and ∆x is b− a, written ∆u|x=a,
∆x=b−a

. Or to put it

another way, if x 
hanges from a to a+ c, then u will 
hange between two values, and the di�eren
e be-

tween these is ∆u|x=a,
∆x=c

.

Formally, every variable x in a problem gets a new variable ∆x (its di�eren
e) asso
iated with it.

In prin
iple, you 
an evaluate an expression with any value of x and any value of ∆x, but any relation-

ships between the variables will give rise to relationships between the variables di�eren
es. To be spe
i�
,

suppose that every variable is a fun
tion of some independent variable t, as in the evaluation notation on

page 4. Then if x = g(t), we de�ne
∆x| t=c,

∆t=h
= g(c+ h)− g(c),

as long as g is de�ned at both c and c+ h. (If it isn t, then ∆x is unde�ned for those values of t and ∆t.)
As with evaluation notation, you don t need to refer to t dire
tly; you 
an use the short
ut that

∆u|x=c,
∆x=h

= u|x=c+h − u|x=c,

if these are de�ned. For example,

∆(2x+ 3)|x=4,
∆x=2

= (2x+ 3)|x=4+2 − (2x+ 3)|x=4 = (2(4 + 2) + 3)− (2(4) + 3) = 4.

In other words, as x varies from 4 to 4 + 2 = 6, u = 2x+ 3 varies from 11 to 15, and the di�eren
e be-

tween these is 4.
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3.2 Di�erentials

The idea behind a di�erential is that it is an in�nitely small di�eren
e. There are various ways to make

this idea logi
ally pre
ise, but we will not go into that in this applied 
ourse. (I will return to this at the

end of the 
ourse, if there is time.) In pla
e of the upper
ase Greek letter `∆' for a standard-sized (�nites-

imal) 
hange, we use the lower
ase Latin letter `d' for an in�nitely small (in�nitesimal) 
hange. So if u
varies smoothly, then du is the di�erential of u, whi
h more or less means ∆b

au when b− a is in�nitely

small (but not quite zero).

Although this is usually not an issue in applied situations, it s important that u be a smoothly varying

quantity, also 
alled a smooth variable. Exa
tly what this means is, again, something that 
an be made

pre
ise. But for now, you 
an think of it as meaning that, whenever the underlying varying reality 
hang-

es by a small amount, the variable quantity u also 
hanges by a small amount, at a de�nite rate, with no

sudden jumps or in�nitely fast 
hange.

3.3 Di�eren
es and di�erentials of linear expressions

The following rules hold exa
tly for di�eren
es:

• ∆k = 0 if k is 
onstant;

• ∆(u+ v) = ∆u+∆v;
• ∆(ku) = k∆u if k is 
onstant.

These equations hold for �nitesimal 
hanges, so they also hold for in�nitesimal 
hanges:

• dk = 0 if k is 
onstant (the Constant Rule);

• d(u+ v) = du+ dv (the Sum Rule);

• d(ku) = k du if k is 
onstant (the Multiple Rule).

This allows us to 
al
ulate di�erentials of linear expressions.

For example:

d(7x) = 7 dx;

d(−5x) = −5 dx;

d(x+ 2) = dx+ d(2) = dx+ 0 = dx;

d(y − 4) = dy + d(−4) = dy + 0 = dy;

d(2t+ 3) = d(2t) + d(3) = 2dt+ 0 = 2dt;

d(7− x) = d(−1x+ 7) = −1 dx+ 0 = −dx;

d(2x+ 3y) = d(2x) + d(3y) = 2 dx+ 3dy;

et
.

3.4 Derivatives of fun
tions

Given any fun
tion f and a number c in the domain of f , the di�eren
e quotient of f at c is a fun
-

tion f̃c, given by

f̃c(h) =
f(c+ h)− f(c)

h
.

Note that f̃c is not de�ned at 0. (In general, it s de�ned at any value h su
h that h 6= 0 and f is de�ned at

c+ h.) The derivative of f at c is the limit of f̃c approa
hing 0:

f ′(c) = lim
h→0

f̃c(h) = lim
h→0

f(c+ h)− f(c)

h
.

(When this exists, we say that f is di�erentiable at c.) This is the de�nition in the textbook (see page 116),

ex
ept that the book doesn t bother to give a name to f̃c.
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Be
ause limits are 
losely related to 
ontinuity, it s possible to give a de�nition of the derivative based

on 
ontinuity. First, extend the de�nition of f̃c like this:

f̃c(h) =







f(c+ h)− f(c)

h
for h 6= 0,

f ′(c) for h = 0.

If there exists a unique number f ′(c) that makes this fun
tion 
ontinuous at 0, then that number is the

derivative of f at c; if there isn t, then this derivative doesn t exist and f is not di�erentiable at c. As it
is, this is just the usual de�nition stated with di�erent terminology. Now I ll do a little algebra on f̃c: if
h 6= 0 and f is de�ned at c+ h, then

f̃c(h) =
f(c+ h)− f(c)

h
,

h f̃c(h) = f(c+ h)− f(c),

h f̃c(h) + f(c) = f(c+ h),

f(c+ h) = f(c) + f̃c(h)h;

if h = 0, then this equation is still true as long as f̃c is de�ned at 0, sin
e then it just says that f(c) =
f(c). So another way to de�ne the derivative is to say that f is di�erentiable at c if there exists a fun
tion

f̃c that is 
ontinuous at 0 and satis�es the last equation above (for all h su
h that f is de�ned at c+ h),
and then f ′(c) = f̃c(0). One reason that this is useful is that having the entire fun
tion f̃c 
an help with

proving theorems about derivatives; see the next se
tion.

3.5 Theorems about derivatives

Every operation has a 
orresponding rule for derivatives. To begin with, re
all that if f and g are fun
-

tions, then f + g is another fun
tion, whi
h is de�ned wherever both f and g are de�ned, and whose val-

ues are given by (f + g)(x) = f(x) + g(x). We similarly have f − g, fg and f/g (but the last of these is

unde�ned wherever the value of g is zero, even if f and g are both de�ned there).

The theorems about their derivatives are as follows:

• The Sum Rule: (f + g)
′
= f ′ + g′,

• The Di�eren
e Rule: (f − g)
′
= f ′ − g′,

• The Produ
t Rule: (fg)
′
= f ′g + fg′,

• The Quotient Rule: (f/g)
′
=

f ′g − fg′

g2
. These are equations about fun
tions; you 
an also put an

argument into them:

(f + g)
′
(x) = f ′(x) + g′(x),

(f − g)
′
(x) = f ′(x)− g′(x),

(fg)
′
(x) = f ′(x)g(x) + f(x)g′(x);

(f/g)
′
(x) =

f ′(x)g(x)− f(x)g′(x)

g(x)
2 .

A general strategy to prove these is to apply the equation for f(c+ h). For example, to prove that

fg is di�erentiable wherever f and g are, with (fg)
′
= f ′g + fg′, I ll use f̃c and g̃c along with the limit
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de�nition of (fg)
′
:

(fg)
′
(c) = lim

h→0

(fg)(c+ h)− (fg)(c)

h
= lim

h→0

f(c+ h) g(c+ h)− f(c) g(c)

h

= lim
h→0

Ä

f(c) + f̃c(h) h
ä Ä

g(c) + g̃c(h) h
ä

− f(c) g(c)

h

= lim
h→0

f(c) g(c) + f(c) g̃c(h)h+ f̃c(h)h g(c) + f̃c(h)h g̃c(h)h− f(c) g(c)

h

= lim
h→0

f̃c(h) g(c)h+ f(c) g̃c(h)h+ f̃c(h) g̃c(h)h
2

h
= lim

h→0

Ä

f̃c(h) g(c) + f(c) g̃c(h) + f̃c(h) g̃c(h) h
ä

= f̃c(0) g(c) + f(c) g̃c(0) + f̃c(0) g̃c(0) 0 = f ′(c) g(c) + f(c) g′(c) + f ′(c) g′(c) 0

= f ′(c) g(c) + f(c) g′(c).

(To evaluate the limit near the end, I need f̃c and g̃c to be 
ontinuous at 0.) I used smaller steps than the

textbook does on page 133 (whi
h is the only reason that my proof is longer), and I think that it s a little

more straightforward, without the part where you add and subtra
t something without knowing yet why it

will help.

The derivative of a 
onstant fun
tion is the 
onstant zero fun
tion; that is, if f(x) = K for all x, where
K is some 
onstant, then

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

K −K

h
= lim

h→0

0

h
= lim

h→0
0 = 0.

This fa
t may be 
alled the Constant Rule. Using this, a spe
ial 
ase of the Produ
t Rule is the Multiple

Rule:

(kf)
′
(x) = kf ′(x)

if k is a 
onstant. Another useful rule is the Power Rule: If f(x) = xn
for all x, where n is a 
onstant,

then

f ′(x) = nxn−1
.

(For integer values of n, this may be proved by repeated appli
ation of the Produ
t and Quotient Rules,

and there is a more 
ompli
ated argument that applies to other rational values of n; however, a 
omplete

proof is easiest after 
onsidering exponents and logarithms.)

Using these rules, you 
an di�erentiate any polynomial fun
tion, or more generally any rational fun
-

tion. For a polynomial, you di�erentiate term by term (allowed by the Sum Rule), ignoring any 
onstant

terms (by the Constant Rule). For ea
h term, you apply the Multiple Rule (to leave any 
oe�
ients alone)

and the Power Rule (to bring down the exponent as a 
oe�
ient and subtra
t one from that exponent).

For example, if f(x) = 3x4 − 5x2 + 2x− 12, then f ′(x) = 3(4x4−1)− 5(2x2−1) + 2(1x1−1) + 0 = 12x3 −
10x+ 2. For rational fun
tions, you must also apply the Quotient Rule. There are examples in Se
tion 3.3

of the textbook and in my video online.

3.6 The Chain Rule

One more rule, very important for theoreti
al purposes, is the Chain Rule. Using this, I ll be able to jus-

tify a new notation for derivatives and an even faster way to 
al
ulate them, so in the end you won t need

to refer to the Chain Rule expli
itly. However, we need it �rst to ensure that the new te
hnique will work!

Here is the Chain Rule in fun
tion notation:
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If g is di�erentiable at c and f is di�erentiable at g(c), then f ◦ g is di�erentiable at c and

(f ◦ g)′(c) = f ′
Ä

g(c)
ä

g′(c).

Here, f ◦ g is the 
omposite of f after g, de�ned by (f ◦ g)(x) = f
Ä

g(x)
ä

.

I ll prove this using g̃c and f̃g(c):

(f ◦ g)′(c) = lim
h→0

(f ◦ g)(c+ h)− (f ◦ g)(c)
h

= lim
h→0

f
Ä

g(c+ h)
ä

− f
Ä

g(c)
ä

h

= lim
h→0

f
Ä

g(c) + g̃c(h) h
ä

− f
Ä

g(c)
ä

h
= lim

h→0

f
Ä

g(c)
ä

+ f̃g(c)
Ä

g̃c(h) h
ä

g̃c(h)h− f
Ä

g(c)
ä

h

= lim
h→0

f̃g(c)
Ä

g̃c(h) h
ä

g̃c(h)h

h
= lim

h→0

(

f̃g(c)
Ä

g̃c(h) h
ä

g̃c(h)
)

= f̃g(c)
Ä

g̃c(0) 0
ä

g̃c(0) = f̃g(c)
Ä

g′(c) 0
ä

g′(c) = f̃g(c)(0) g
′(c)

= f ′
Ä

g(c)
ä

g′(c).

This proof is as straightforward as something so abstra
t 
an be, and it 
an be done immediately and

rigorously without postponing things as the textbook does. I have the de�nition of derivative using f̃c to
thank for this; this de�nition of derivative will be handy for some other proofs later on, su
h as for the

Mean Value Theorem.

One immediately useful 
onsequen
e of the Chain Rule is a generalized form of the Power Rule (what

the textbook 
alls the Power Chain Rule): If g is di�erentiable at c and n is a 
onstant, then gn is also

di�erentiable at c (where (gn)(x) is de�ned as g(x)
n
), and (gn)

′
(c) = ng(c)

n−1
g′(c). The reason is that gn

is a 
omposite f ◦ g where f is the power fun
tion given by f(x) = xn
.

3.7 Di�erentials

Many 
al
ulations in 
al
ulus are easier to do using di�erentials. Furthermore, di�erentials and the related

di�erential forms are often used in appli
ations, espe
ially (but not only) to physi
s. The o�
ial textbook


overs di�erentials (in Se
tion 3.11), but in
ompletely and only in one minor appli
ation. It then uses dif-

ferentials again later (mostly in material for Cal
ulus 2 and 3), but they are useful mu
h earlier. So I will

make heavy use of them.

If x is a variable quantity, then dx is the di�erential of x. You 
an think of dx as indi
ating an in-

�nitely small (in�nitesimal) 
hange in the value of x, or (better) the amount by whi
h x 
hanges when an

in�nitesimal 
hange is made (an in�nitely small 
hange in the value of the independent variable t). A pre-


ise de�nition is in the next se
tion, but you will not be tested dire
tly on that; what you need to know is

how to use di�erentials.

Note that dx is not d times x, and dx is also not exa
tly a fun
tion of x. Rather, x (being a variable

quantity) should itself be a fun
tion of some other quantity t, and dx is also a fun
tion of a sort; so d is an

operator : something that turns one fun
tion into another fun
tion. However, an expression like u dx does

involve multipli
ation: it is u times the di�erential of x.
We often divide one di�erential by another; for example, dy/dx is the result of dividing the di�eren-

tial of y by the di�erential of x. The textbook introdu
es this notation early to stand for the derivative

of y with respe
t to x, and indeed it is that; but what the book doesn t tell you is that dy/dx literally

is dy divided by dx. Unfortunately, d2y/dx2
, the se
ond derivative of y with respe
t to x, is not literally

d2y = d(dy) divided by dx2 = (dx)
2
; for this reason, I prefer the notation (d/dx)

2
y, meaning (d/dx)(d/dx)y =

(d/dx)(dy/dx) = d(dy/dx)/dx for the se
ond derivative.

The most important fa
t about di�erentials is this: If f is a di�erentiable fun
tion, then

d
Ä

f(u)
ä

= f ′(u) du.
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That is, the di�erential of f(u) equals f ′(u) times the di�erential of u, where f ′
is the derivative of the

fun
tion f . This fa
t not only shows the relationship between di�erentials and derivatives, but also (be-


ause u 
ould be any quantity) it en
apsulates the Chain Rule in di�erential form. The Chain Rule is an

important prin
iple in 
al
ulus, whi
h is often di�
ult to learn how to use; but with di�erentials it is easy.

For example, suppose that you have dis
overed (say from the de�nition as a limit) that the derivative

of f(x) = x2
is f ′(x) = 2x. Then this fa
t 
an be expressed in di�erential form:

(*)d(x2) = 2x dx.

Conversely, if (by performing a 
al
ulation with di�erentials) you dis
over the equation (*) above, then

you know the derivative of f as well:

f ′(x) =
d
Ä

f(x)
ä

dx
=

d(x2)

dx
=

2x dx

dx
= 2x.

Whi
hever of these fa
ts you dis
over �rst, on
e you know them, you know something even more general:

d(u2) = 2u du.

(The power to derive this from equation (*) is the Chain Rule.) The value of this is that u 
an be any ex-

pression whatsoever; for example, if u = x2
again, then

d(x4) = d
Ä

(x2)
2
ä

= 2(x2) d(x2) = 2x2(2x dx) = 4x3 dx.

So now you have learnt a new derivative, without having to 
al
ulate it from s
rat
h.

Every theorem about derivatives of fun
tions may also be expressed as a theorem about di�erentials.

Here are the most 
ommon rules:

• The Constant Rule: d(K) = 0 if K is 
onstant.

• The Sum Rule: d(u+ v) = du+ dv.
• The Translate Rule: d(u+ C) = du if C is 
onstant.

• The Di�eren
e Rule: d(u− v) = du− dv.
• The Produ
t Rule: d(uv) = v du+ u dv.
• The Multiple Rule: d(ku) = k du if k is 
onstant.

• The Quotient Rule: d

Å

u

v

ã

=
v du− u dv

v2
.

• The Power Rule: d(un) = nun−1 du if n is 
onstant.

• The Root Rule: d( m
√
u) =

m
√
u du

mu
if m is 
onstant.

Of these, only the Constant Rule, the Sum Rule, the Produ
t Rule, and the Power Rule are absolutely

ne
essary, sin
e every other expression built out of the operations in the rules above 
an be built out of

the operations in these four rules. However, it is often handy to use all of these rules; it is up to you how

many of these rules to learn. (The Power Rule given here really 
orresponds to the Generalized Power

Rule in the textbook, be
ause it in
orporates the Chain Rule within it. The Root Rule is not in the text-

book, be
ause a root 
an be algebrai
ally transformed into a power; but the version here rationalizes the

denominator, whi
h 
an be 
onvenient.)

In addition, every time that you learn the derivative of a new fun
tion, you learn a new rule for dif-

ferentials, by applying the Chain Rule to that fun
tion. I already showed you an example of this on page

16: applying the Chain Rule to the fun
tion f(x) = x2
gives the spe
ial 
ase of the Power Rule for n = 2.

Here are a few other fun
tions whose derivatives you will learn, expressed as rules for di�erentials:
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• d(expu) = expu du.

• d(lnu) =
du

u
.

• d(sinu) = cosu du.
• d(cosu) = − sinu du.

• d(atanu) =
du

u2 + 1
.

And more! (To be 
lear, expu means eu, lnu = loge u, u is in radians in sinu and cosu, and atanu is

what is also written arctanu, Tan−1 u, or tan−1 u and gives a result in radians.)

Noti
e that every one of these rules turns the di�erential on the left into a sum of terms (possibly on-

ly one term, or none in the 
ase of the Constant Rule), ea
h of whi
h is an ordinary expression multiplied

by a di�erential (or something algebrai
ally equivalent to this). An expression like this is 
alled a di�er-

ential form (although a
tually there are more general sorts of di�erential forms). If, when you are 
al-


ulating the di�erential of an expression, your result at any stage is not like this, then you have made a

mistake!

3.8 De�ning di�erentials

To formally de�ne what di�erentials are and prove their properties, I ll make the same assumption that I

made at the beginning of these notes, that there is an independent variable t that every other variable is

a fun
tion of. Then, I said that if u = f(t), then u|t=c = f(c). Now I ll say that, if u = f(t) and the fun
-

tion f is di�erentiable, then

du| t=c,
dt=h

= f ′(c)h.

More generally, if u = f(t) and v = g(t), then

(u dv)| t=c,
dt=h

= f(c) g′(c)h.

Again, this is abstra
t, but the 
on
rete appli
ation is straightforward; for example:

(2x dx+ 3dx)|x=4,
dx=0.05

= 2(4)(0.05) + 3(0.05) = 0.55,

(2x dx+ 3y dy)|x=4,y=5,
dx=0.05,dy=0.02

= 2(4)(0.05) + 3(5)(0.02) = 0.7.

(I ve put small numbers in for dx and dy, be
ause this is most often what 
omes up in pra
ti
e, although

for theoreti
al purposes it doesn t matter.) It s now more 
ommon to be given only partial information;

for example:

(2x dx+ 3dx)|x=4 = 2(4) dx+ 3dx = 11dx,

(2x dx+ 3y dy)|x=4,
y=5

= 2(4) dx+ 3(5) dy = 8dx+ 15dy.

Noti
e that you don

′
t plug in the values of x and y inside the di�erential operator d; if you re not given

values of dx and dy, then those di�erentials must remain in the answer.

While expressions like the above 
ome up o

asionally (see the dis
ussion of linear approximation

on pages 21 and 22), the main purpose of a pre
ise de�nition is to prove theorems. (That s how we 
an

be sure that the rules of Cal
ulus will always work, at least when the de�nitions that prove them 
an be

made to apply.) Earlier I gave a list of rules for di�erentials; we 
an prove these using the pre
ise de�ni-

tion of di�erential and the known rules for derivatives of fun
tions. For example, if u = f(t) and v = g(t),
then uv = f(t) g(t) = (fg)(t). Therefore,

d(uv)| t=c,
dt=h

= (fg)
′
(c)h =

Ä

f ′(c) g(c) + f(c) g′(c)
ä

h = g(c) f ′(c)h+ f(c) g′(c)h = (v du+ u dv)| t=c,
dt=h

.

Here, I ve used the formal de�nition of di�erential along with the Produ
t Rule for derivatives of fun
-

tions. The 
on
lusion is that d(uv) and v du+ u dv always evaluate to the same result, so

d(uv) = v du+ u dv,
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whi
h is the Produ
t Rule for di�erentials. In the same way, all of the rules for di�erentials follow from

rules for derivatives of fun
tions.

The Chain Rule is an important spe
ial 
ase, so I ll prove it too. If u = g(t) and f is any fun
tion,

then f(u) = f(g(t)) = (f ◦ g)(t), so if f is di�erentiable, then

d
Ä

f(u)
ä

∣

∣

∣ t=c,
dt=h

= d
Ä

(f ◦ g)(t)
ä

∣

∣

∣ t=c,
dt=h

= (f ◦ g)′(c)h = f ′
Ä

g(c)
ä

g′(c)h =
Ä

f ′(u) du
ä

∣

∣

∣ t=c,
dt=h

.

Again, I used the de�nition of di�erential and the Chain Rule for fun
tions, and my 
on
lusion is the Chain

Rule for di�erentials:

d
Ä

f(u)
ä

= f ′(u) du

whenever f is a di�erentiable fun
tion.

It s not really essential to assume that there exists a single independent variable that every other vari-

able is a fun
tion of, and we ll stop making that assumption in Cal
ulus 3 (if you sti
k around that long).

Then the formal de�nition will be
ome a little tri
kier, but all of the rules for di�erentials will 
ontinue to

apply exa
tly as I stated them above.

3.9 Using di�erentials

The main te
hnique for using di�erentials is simply to take the di�erential of both sides of an equation.

However, you may only do this to an equation that holds generally , but not to an equation that holds only

for parti
ular values of the variables. (Ultimately, this is be
ause d is an operator, not a fun
tion, so it

must be applied to entire fun
tions, not only to parti
ular values of those fun
tions.)

The simplest 
ase is an equation su
h as y = exp (x2), when we want the derivative of y with respe
t

to x. So:
y = exp (x2);

dy = d(exp (x2)) = exp (x2) d(x2) = exp (x2) · 2x dx = 2x exp (x2) dx;

dy

dx
= 2x exp (x2).

Now we have the derivative. If we want the se
ond derivative, then we do this again:

dy/dx = 2x exp (x2);

d(dy/dx) = d
Ä

2x exp (x2)
ä

= exp (x2) d(2x) + 2x d
Ä

exp (x2)
ä

= exp (x2) · 2 dx+ 2x · 2x exp (x2) dx = (2 exp (x2) + 4x2 exp (x2)) dx;

(d/dx)
2
y =

d(dy/dx)

dx
= 2 exp (x2) + 4x2 exp (x2).

Now we have the se
ond derivative (also written d2y/dx2
).

The previous example began with an equation solved for y. But we don t need this; suppose instead

that we have y5 + x2 = x5 + y (whi
h 
annot be solved for either variable using the usual algebrai
 oper-

ations of addition, subtra
tion, multipli
ation, division, powers, and roots). Undaunted, we forge ahead

anyway:

y5 + x2 = x5 + y;

d(y5 + x2) = d(x5 + y);

d(y5) + d(x2) = d(x5) + dy;

5y5−1 dy + 2x2−1 dx = 5x5−1 dx+ dy;

5y4 dy − dy = 5x4 dx− 2x dx;

(5y4 − 1) dy = (5x4 − 2x) dx;

dy

dx
=

5x4 − 2x

5y4 − 1
.
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This pro
ess is 
alled impli
it di�erentiation.

The se
ond derivative is a little more straightforward at �rst (or it would be if we didn t have to use

the Quotient Rule), but there is a twist at the end:

dy/dx =
5x4 − 2x

5y4 − 1
;

d(dy/dx) = d

Å

5x4 − 2x

5y4 − 1

ã

=
(5y4 − 1) d(5x4 − 2x)− (5x4 − 2x) d(5y4 − 1)

(5y4 − 1)
2

=
(5y4 − 1)(20x3 − 2) dx− (5x4 − 2x)(20y3) dy

(5y4 − 1)
2

=
20x3 − 2

5y4 − 1
dx− 20y3(5x4 − 2x)

(5y4 − 1)
2 dy;

(d/dx)
2
y =

d(dy/dx)

dx
=

20x3 − 2

5y4 − 1
− 20y3(5x4 − 2x)

(5y4 − 1)
2

dy

dx

=
20x3 − 2

5y4 − 1
− 20y3(5x4 − 2x)

(5y4 − 1)
2

5x4 − 2x

5y4 − 1

(whi
h 
ould be simpli�ed further). Noti
e that I substitute the known expression for dy/dx in the last

step.

Another handy appli
ation of di�erentials is the 
ase where both quantities x and y may be expressed

as fun
tions of some other quantity t. (For the purposes of formal de�nitions, we always assume that this

is possible, but now we re really going to use it.) If we start with the same equation as above, then this

will give us an equation relating the derivatives with respe
t to t:

y5 + x2 = x5 + y;

d(y5 + x2) = d(x5 + y);

d(y5) + d(x2) = d(x5) + dy;

5y5−1 dy + 2x2−1 dx = 5x5−1 dx+ dy;

5y4
dy

dt
+ 2x

dx

dt
= 5x4 dx

dt
+

dy

dt
.

If we have information about one or both of these derivatives, then this equation will often give us useful

information to solve a problem. This situation is 
alled related rates, sin
e derivatives 
an be viewed as

rates of 
hange (espe
ially derivatives with respe
t to time t, although the t in the equation above doesn t

have to stand for time).

When we get to integrals, di�erentials be
ome so useful that even the textbook starts using them, but

I ll save that for later.

3.10 Derivatives with respe
t to time

Derivatives with respe
t to time are a major appli
ation of Cal
ulus. Here are some examples:

Quantity: Derivative (with respe
t to time): Se
ond derivative: Third derivative:

Position Velo
ity A

eleration Jerk

Velo
ity A

eleration Jerk

Speed Colloquial a

eleration

A

eleration Jerk

Net wealth Net in
ome

National debt National de�
it
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Position tells you where something is, while velo
ity tells you how it is moving, that is how its po-

sition is 
hanging with time. Velo
ity is not quite the same thing as speed, sin
e velo
ity keeps tra
k of

dire
tion as well. (In this 
lass, most problems involving motion will take pla
e in only one dimension, so

there are two dire
tions, represented by positive and negative velo
ity, while speed is the absolute value of

velo
ity.)

The derivative of velo
ity with respe
t to time, in other words the se
ond derivative of position with

respe
t to time, is a

eleration in the te
hni
al sense of this term. On the other hand, the derivative of

speed is 
olloquial a

eleration, whi
h re�e
ts how the term is used in everyday life. Colloquially, we

say that an obje
t is a

elerating if its speed in
reases with time (in other words if it is speeding up) and

de
elerating if its speed de
reases (in other words if it is slowing down). But in the te
hni
al sense of the

term, if an obje
t is moving in the negative dire
tion and slows down, then its velo
ity is be
oming less

negative and more positive, and so its a

eleration is positive, even though its 
olloquial a

eleration is

negative. (For motion in more than one dimension, its even possible for the 
olloquial a

eleration to be

zero even while the te
hni
al a

eleration is far from zero; this happens when 
hanging dire
tion while

travelling at a 
onstant speed.)

The time derivative of a

eleration (in the te
hni
al sense) is jerk; that makes jerk the se
ond deriva-

tive of velo
ity and the third derivative of position. Whereas position and velo
ity 
an t be dire
tly felt,

you feel a

eleration as a pressure or absen
e thereof (a sense of falling or being held or pushed), and a

sudden 
hange in that a

eleration is a jerk or yank. In engineering, a

eleration must be 
ontrolled be-


ause it 
an destroy obje
ts by 
rushing; jerk must be 
ontrolled be
ause it 
an destroy obje
ts by break-

ing them apart. Even higher derivatives of position are sometimes also studied, although the terminology

varies.

Turning to �nan
es, your net wealth is the total value of all assets that you own minus the value of

all of your debts. (If you owe more than you own, then your net wealth is negative.) This is measured in

units of money, su
h as dollars. Your net in
ome, on the other hand, is the total value of everything that

you re
eive (as wages, gifts, and so forth) in a period of time minus the value of your expenses. This is

measured in units of money per unit of time, su
h as dollars per year. In �nan
e, the default unit of time

is a year, so you ll often say that someone s in
ome is so many dollars, but this really means so many dol-

lars per year. Unlike physi
al motion, money goes in and 
omes out in dis
rete 
hunks, so the 
ontinuous

ideas of Cal
ulus are only an approximation, but they 
an be a good approximation for some purposes.

Turning from personal �nan
es to national, a 
ountry s government usually has some debt, 
alled

the 
ountry s national debt, and if the government spends more than it re
eives from taxes and oth-

er revenue, then the di�eren
e is the national de�
it. The debt is the total amount of money owed by

the government, while the de�
it is the additional amount that has to be borrowed in a given period of

time. Again, de�
it should really be measured in units of money per unit of time; so if someone says the

the U.S. national de�
it is nearly 500 billion dollars, this really means 500 billion dollars per year. This is

the same as 5000 billion dollars (or 5 trillion dollars) per de
ade (sin
e a de
ade is 10 years). On the other

hand, when they say that the U.S. national debt is nearly 20 trillion dollars, then they are saying exa
tly

what they mean; this is the net result of all of the de�
its (and o

asional surpluses, whi
h are negative

de�
its) in the past.

In 2010, there was a widely 
ited e
onomi
s paper (Reinhart & Rogo�) that argued that a 
ountry

tended towards e
onomi
 disaster as its government s debt approa
hed its gdp (gross domesti
 produ
t,

a measure of a 
ountry s overall in
ome). In 2013, a review (Herndon, Ash, & Pollin) found statisti
al er-

rors that undemined the paper s 
on
lusions, and this made the mainstream news media for a while. This

should have just been the normal pro
ess of s
ien
e: a �awed idea being 
orre
ted. But it was big news

be
ause Reinhart & Rogo� had stru
k an intuitive 
hord; it made sense that of 
ourse your debt should

always be well below your ability to pay it o�. But in fa
t that only sounds reasonable if you ignore the

units! Reinhart & Rogo� s 
on
lusion was really that a 
ountry was 
ourting disaster if its government s

debt was 
lose to its gdp times one year ; otherwise, the units of measurement don t make sense. The idea

that a 
ountry should have enough in
ome to pay o� its government s debt be
omes the idea that a 
oun-

try should have enough in
ome to pay o� its government s debt in one year (if all in
ome were devoted to

this purpose), and there s no intuitive reason why that should be ne
essary to avoid e
onomi
 ruin. (It is

still true that a 
ountry s e
onomy tends to be better o� when its government debt divided by its gdp is
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lower than otherwise, and it s 
on
eivable that there 
ould be some reason that there s something spe
ial

about when that quotient is 
lose to one year; but there isn t.)

3.11 Linear approximation

Re
all from page 13 above that if f is di�erentiable at c, then

f(c+ h) = f(c) + f̃c(h)h

for some fun
tion f̃c that s 
ontinuous at 0 (and then f̃c(0) is f
′(c)). Sin
e f̃c is 
ontinuous at 0, we 
an

say that f̃c(h) ≈ f̃c(0) when h ≈ 0, or in other words, f̃c(h) ≈ f ′(c) when h ≈ 0. Putting this approxima-

tion in the equation above, we get

f(c+ h) ≈ f(c) + f ′(c)h

when h ≈ 0. Writing x for c+ h (so that h = x− c), you 
an also put this as

f(x) ≈ f(c) + f ′(c) (x− c)

when x ≈ c. While the left-hand side 
ould be any di�erentiable fun
tion, the right-hand side is a linear

fun
tion of x; this fun
tion is the linear approximation to f near c, or the linearization of f near c.
The textbook likes to name this fun
tion L; so f(x) ≈ L(x) = f(c) + f ′(c) (x− c). I don t like that

name, be
ause whi
h fun
tion you get as the linear approximation depends on whi
h fun
tion you start

with as well as on whi
h number c you look at. So I write Lf,c for the linearization of f near c:

f(x) ≈ Lf,c(x) = f(c) + f ′(c) (x− c).

This is a
tually only the beginning of a whole sequen
e of approximations, ea
h (typi
ally) better

than the one before it:

f(x) ≈ f(c), a 
onstant, if f is 
ontinuous at c;

f(x) ≈ f(c) + f ′(c) (x− c), a linear fun
tion of x, if f is di�erentiable at c;

f(x) ≈ f(c) + f ′(c) (x− c) +
1

2
f ′′(c) (x− c)

2
, a quadrati
 fun
tion of x, if f is twi
e di�erentiable at c;

f(x) ≈ f(c) + f ′(c) (x− c) +
1

2
f ′′(c) (x− c)

2
+

1

6
f ′′′(c) (x− c)

3
, a 
ubi
 fun
tion of x,

if f is 3-times di�erentiable at c;

.

.

.

(This sequen
e of approximations is 
overed in Cal
ulus 2; see Se
tion 9.8 of the textbook and page 45 of

these notes.)

It s handy to des
ribe linear approximation in terms of di�erentials and di�eren
es. While a di�eren-

tial represents an in�nitesimal (in�nitely small) 
hange, a di�eren
e represents an appre
iable or �nites-

imal (meaning not in�nitely small) 
hange. As x 
hanges from c to c+ h, we say that the di�eren
e in x
is

∆x = (c+ h)− c = h.

Meanwhile, if y = f(x), then the di�eren
e in y is

∆y = y|x=c+h − y|x=c = f(c+ h)− f(c).

To be spe
i�
, we 
an write

∆y|x=c,
∆x=h

= f(c+ h)− f(c).
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Then the linear approximation says that

∆y|x=c,
∆x=h

= f(c+ h)− f(c) ≈ f(c) + f ′(c)h− f(c) = f ′(c)h = dy|x=c,
dx=h

.

So in the end, the linear approximation repla
es di�eren
es with di�erentials. Although

∆y|x=c,
∆x=h

≈ dy|x=c,
dx=h

is the proper way to put it, often one abbreviates this as

∆y ≈ dy.

(But really this only 
orre
t if we also have ∆x = dx, or at least ∆x ≈ dx, be
ause that di�eren
e is also
repla
ed by a di�erential in the approximation.)

More generally, you 
an say that an equation involving di�erentials 
an be repla
ed by an approxi-

mate equation involving di�eren
es. For example, if x5 + 2x = y5 + y, then 5x4 dx+ 2dx = 5y4 dy + dy
(by di�erentiating both sides), so 5x4 ∆x+ 2∆x ≈ 5y4 ∆y +∆y. Then if you are looking near the only

obvious solution, (x, y) = (0, 0), and you want to know the value of y when x = 0.3 (so ∆x = 0.3− 0 = 0.3,

you �nd 5(0)
4
(0.3) + 2(0.3) ≈ 5(0)

4
∆y +∆y, so ∆y ≈ 0.6; in other words, the new y-value is approximate-

ly 0 + 0.6 = 0.6. (The a
tual solution to (0.3)
5
+ 2(0.3) = y5 + y is y|x=0.3 ≈ 0.55 to 2 de
imal pla
es, but

I 
ouldn t do that by hand!)

It 
an be important to know how far o� an approximation might be, and this is basi
ally given by

the next term in the sequen
e of approximations on the top of the page. To be spe
i�
, the Mean-Value

Theorem (see pages 23 and 24) says that f(x)− f(c) (whi
h is the error in the 
onstant approximation

f(x) ≈ f(c)) 
annot be any larger in absolute value than |x− c| times the maximum value that f ′
takes

between x and c; similarly, f(x)− Lf,c(x) (whi
h is the error in the linear approximation near c) 
annot

be any larger in absolute value than |x− c|2 times half the maximum value that f ′′
takes between x and c.

However, the details of why this is so are best saved for the full treatment of the entire sequen
e of ap-

proximations that begins on page 45 of these notes.

3.12 Newton

′
s Method

If you want to solve an equation f(x) = 0, then the Intermediate Value Theorem may give you a way to

approximate the solution, but it is usually very ine�
ient. The Newton�Raphson Method (or simply New-

ton s Method) is usually mu
h faster, although it doesn t always work. Here, you start with a guess x0,

then repla
e it with a (hopefully) better guess x1, and so on. These guesses are 
omputed in turn as fol-

lows:

x1 = x0 +
f(x0)

f ′(x0)
,

x2 = x1 +
f(x1)

f ′(x1)
,

x3 = x2 +
f(x2)

f ′(x2)
,

.

.

.

With any lu
k, none of these guesses will give f ′(x) = 0 (whi
h makes the next guess unde�ned) but even-

tually one will give f(x) ≈ 0 to as 
lose an approximation as one wants.

The Newton�Raphson Method is guaranteed to work under 
ertain 
onditions given by the Newton�

Kantorovi
h Theorem: If f is di�erentiable at a, f(a) and f ′(a) are nonzero, f is twi
e di�erentiable stri
t-

ly between a and a− 2f(a)/f ′(a), and

|f ′′(x)| ≤ |f ′(a)|2
2 |f(a)|

whenever x is stri
tly between a and a− 2f(a)/f ′(a), then Newton s Method will give a sequen
e of values

that are stri
tly between a and a− 2f(a)/f ′(a), and that 
onverge to a solution of f(x) = 0 in the sense

that the limit limn→∞ xn exists and f(limn→∞ xn) = 0.
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3.13 Advan
ed theorems

There are various theorems about derivatives and di�erentials that should seem obvious if you understand

the basi
 idea, but mathemati
ians have still proved them just to be safe.

For example, the derivative of a fun
tion is supposed to tell us how mu
h the output is 
hanging rel-

ative to the input. In parti
ular, if the derivative is positive, then the output should in
rease when the

input in
reases and de
rease when the input de
reases; 
onversely, if the derivative is negative, then the

output should de
rease when the input in
reases and de
rease when the input in
reases. The �rst kind of

fun
tion is 
alled in
reasing and the other is de
reasing ; there are pre
ise theorems that a fun
tion whose

derivative somewhere is positive or negative must be in
reasing or de
reasing (repse
tively) near there.

Conversely, if a fun
tion has a lo
al extremum, then the derivative must be either zero or unde�ned there.

This fa
t is key to optimization (see page 25 and following).

Another group of theorems are the mean-value theorems. The point of a derivative is that it 
an be

approximated by a di�eren
e quotient; the mean-value theorems reverse this, and show how a di�eren
e

quotient must (under some 
onditions) be equal to a derivative somewhere nearby. All of these theorems


onsider a fun
tion f de�ned on at least an interval [a, b] (with a < b) su
h that f is 
ontinuous on all of

[a, b] and di�erentiable at least between a and b (but possibly not at a or b themselves).

Spe
i�
ally, Rolle s mean-value theorem says

If f(b)− f(a) = 0, then f ′(c) = 0 for some c between a and b.

Then Lagrange s mean-value theorem says

In any 
ase, f ′(c) =
f(b)− f(a)

b− a
for some c between a and b.

Finally, Cau
hy s mean-value theorem says

If g is another fun
tion satisfying the same 
onditions as f and if furthermore g′ is never zero

between a and b, then
f ′(c)

g′(c)
=

f(b)− f(a)

g(b)− g(a)
for some c between a and b.

In Cau
hy s mean-value theorem, I like to think of f(x) as u and g(x) as v, so that the left-hand side is

du/dv (evaluated at x = c) while the right-hand side is ∆u/∆v (evaluated at x = a and ∆x = b− a). La-
grange s theorem is the spe
ial 
ase of Cau
hy s theorem where g(x) is always simply x, and Rolle s theo-

rem is the spe
ial 
ase of Lagrange s theorem where f(b)− f(a) = 0.

3.14 L

′
H�opital

′
s Rule

One important 
onsequen
e of Cau
hy s mean-value theorem is L H�opital s Rule. This is a rule for lim-

its again, but it handles limits with forms su
h as ∞÷∞ and 0÷ 0.
L H�opital s Rule applies when taking limits in any dire
tion D, if u and v are two quantities de�ned

in the dire
tion D, so long as either limD (1/v) = 0 (so limD v = ±∞ in other words) or both limD u and limD v
are zero. In that 
ase, if limD (du/dv) exists, then limD (u/v) also exists and the two limits are equal.

L H�opital s Rule 
an also be applied to limits with exponents by taking logarithms, applying the rule

dire
tly, and reversing the logarithms. It is therefore very versatile, although Taylor series (see page 49)


an do even more.

3.15 Con
avity

There are various terms used when the values of a fun
tion, its average rates of 
hange, or its se
ond av-

erage rates of 
hange (the rates of 
hange of the rates of 
hange) are all positive (or negative), at least on

some interval. When the fun
tion is di�erentiable, and espe
ially when it s twi
e di�erentiable, there are

easier ways to des
ribe these. This is all summarized in the table below.
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Property of f : De�nition: If di�erentiable: If twi
e di�erentiable:

Positive f(a) > 0 � �

Negative f(a) < 0 � �

In
reasing

f(b)− f(a)

b− a
> 0 f ′(a) > 0 �

De
reasing

f(b)− f(a)

b− a
< 0 f ′(a) < 0 �

Con
ave upward

f(c)− f(b)

c− b
− f(b)− f(a)

b− a

c− a

f ′(b)− f ′(a)

b− a
> 0 f ′′(a) > 0

Con
ave downward

f(c)− f(b)

c− b
− f(b)− f(a)

b− a

c− a

f ′(b)− f ′(a)

b− a
< 0 f ′′(a) < 0

In all of these, the fun
tion f has the given property on some interval if the given 
ondition holds whenev-

er a, b, and c are distin
t numbers in that interval. (They must be distin
t to avoid division by zero.)

Generally, it s mu
h easier to work with the rightmost 
ondition for every property, but you 
an t do

that if the ne
essary derivatives don t exist. Even if the fun
tion isn t di�erentiable at all, it still makes

sense to say whether or not it s 
on
ave upward or downward.

In
identally, here is some other terminology that you may see for these properties:

• Sometimes people use ≥ and ≤ in pla
e of > and <. If you want to be 
lear, you 
an use adverbs:

`stri
tly' for the de�nitions above (using > and <) or `weakly' for the versions with ≥ and ≤.
• Sometimes people put the word `monotone' in front of `in
reasing' and `de
reasing', even though it

really isn t ne
essary. (However, when people use this word, they are more likely to mean Æweakly�

too, even if they don t say so.)

• Alternatively, if the word `monotone' is used alone, then it means Æin
reasing� (probably Æweakly in-


reasing�); the 
orresponding word for Æde
reasing� (usually Æweakly de
reasing�) is `antitone' (but

this word is fairly rare).

• If the word `
on
ave' is used alone, then it means Æ
on
ave downard�; the 
orresponding word for

Æ
on
ave upward� is `
onvex' (and this word is extremely 
ommon). Again, people who use this ter-

minology are more likely to mean Æweakly�.

3.16 Graphing

If you want to have a 
omplete graph of a fun
tion f , then these are all of the things that you should

make sure show up:

• x = 0, if f is de�ned at that point;

• x → −∞, if f is de�ned in that dire
tion;

• x → ∞, if f is de�ned in that dire
tion;

• x → c−, if f is de�ned in that dire
tion, whenever f is unde�ned or dis
ontinuous at c;
• x → c+, if f is de�ned in that dire
tion, whenever f is unde�ned or dis
ontinuous at c;
• x = c, if f is de�ned at that point, whenever f is unde�ned approa
hing c from either dire
tion (or

both);

• x = c, whenever f(c) = 0;
• x = c, whenever f ′

is unde�ned or dis
ontinuous at c, if f is de�ned there;

• x = c, whenever f ′(c) = 0;
• x = c, whenever f ′′

is unde�ned or dis
ontinuous at c, if f is de�ned there;

• x = c, whenever f ′′(c) = 0.
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This should be su�
ient whenever f is a twi
e-di�erentiable fun
tion whose domain is an interval, or more

generally whenever f is pie
ewise twi
e-di�erentiable: a pie
ewise-de�ned fun
tion in whi
h the domain

of ea
h pie
e is an interval and in whi
h ea
h pie
e is twi
e-di�erentiable ex
ept possibly at its endpoints.

(There are weirder fun
tions that 
an t be put in this form, but you shouldn t have to deal with them in

this 
lass.)

If you have a graphing 
al
ulator, then you may use it, but you still need to ensure that all of the fea-

tures listed above appear. At the very least, this may require you to adjust the 
al
ulator s graphing win-

dow. If you re graphing by hand, then you ll get the best results if you know the values or limits of f , f ′
,

and f ′′
for all of these, but you should at least get f for all of them and f ′

whenever you looked there be-


ause of something involving f ′
or f ′′

. You 
an also look at points in between these (assuming that f is

de�ned there).

3.17 Optimization

Literally, optimization is making something the best, but we use it in math to mean maximization,

whi
h is making something the biggest. (You 
an imagine that the thing that you re maximizing is a nu-

meri
al measure of how good the thing that you re optimizing is.) Essentially the same prin
iples apply

to minimization, whi
h is making something the smallest. (And pessimization is making something the

worst, although people don t use that term very mu
h.) A generi
 term for making something the largest

or smallest is extremization.

In theory, optimization is simply �nding absolute extrema, whi
h is most easily done for 
ontinuous

fun
tions on 
losed, bounded intervals. In that 
ase, the maximum and minimum must both exist, by the

Extreme Value Theorem, and ea
h of them must o

ur at either the endpoint of the interval or where the

derivative of the fun
tion is either zero or unde�ned. However, pra
ti
al problems 
annot always be mod-

elled in this way, so we will need some more general te
hniques.

The key prin
iple of applied optimization is this:

A quantity u 
an only take a maximum or minimum value when its di�erential du is zero or un-

de�ned.

If you write u as f(x), where f is a �xed di�erentiable fun
tion and x is a quantity whose range of possi-

ble values you already understand (typi
ally an interval), then du = f ′(x) dx. So u 
an only take an ex-

treme value when its derivative (with respe
t to x) is zero or unde�ned or when you 
an no longer vary

x however you please (whi
h must o

ur at the extreme values of x and typi
ally only then). This re
re-

ates the situation that I referred to above, �nding the extreme values of a fun
tion de�ned on an interval.

However, the prin
iple that du is zero or unde�ned applies even when u is not expli
itly given as a fun
-

tion of anything else.

Be 
areful, be
ause u might not have a maximum or minimum value! Assuming that u varies 
ontinu-

ously (whi
h it must if Cal
lulus is to be useful at all), then it must have a maximum and minimum value

whenever the range of possibilities is 
ompa
t ; this means that if you pass 
ontinuously through the possi-

bilities in any way, then you are always approa
hing some limiting possibility. (In terms of u = f(x), this
is the 
ase when f is 
ontinuous and its domain, the range of possible values of x, is a 
losed and bounded

interval.)

However, if the range of possibilities heads o� to in�nity in some way, or if there is an edge 
ase that s

not quite possible to rea
h, then you also have to take a limit to see what value u is approa
hing. (In

terms of u = f(x), if the interval is open or unbounded at either end, then there is a dire
tion in whi
h

x 
ould vary but in whi
h there is no limiting value of x in the range of possibilities.) If any su
h limit

is larger than every value that u a
tually rea
hes (whi
h in
ludes the possibility that a limit is ∞), then

u has no maximum value; if any su
h limit is smaller than every value that u a
tually rea
hes (whi
h in-


ludes the possibility that a limit is −∞), then u has no minimum value.

So in the end, you look at these possibilities:

• when the derivative of u is zero or unde�ned,

• the extreme edge 
ases, and

• the limits approa
hing impossible limiting 
ases.
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The largest value of u that you �nd in this way (regardless of whether this value is a
tually attained or

is only approa
hed in the limit) is 
alled the supremum of u; similarly, the smallest value of u that you

�nd is 
alled the in�mum of u. If u a
tually takes the value of its supremum, then that same value is also

the maximum of u; but if u only approa
hes its supremum in a limit, then it has no maximum. Similarly,

if u a
tually takes the value of its in�mum, then that same value is also the minimum of u; but if u only

approa
hes its in�mum in a limit, then it has no minimum.

Here is a typi
al problem: The hypotenuse of a right triangle (maybe it s a ladder leaning against a

wall) is �xed at 20 feet, but the other two sides of the triangle 
ould be anything. Still, sin
e it s a right

triangle, we know that x2 + y2 = 202, where x and y are the lengths of legs of the triangle. Di�erentiat-

ing this, 2x dx+ 2y dy = 0. Now suppose that we want to maximize or minimize the area of this trian-

gle. Sin
e it s a right triangle, the area is A = 1
2xy, so dA = 1

2y dx+ 1
2x dy. If this is zero, then

1
2y dx+

1
2x dy = 0, to go along with the other equation 2x dx+ 2y dy = 0.

The equations at this point will always be linear in the di�erentials, so think of this is a system of

linear equations in the variables dx and dy. There are various methods for solving systems of linear equa-

tions; I ll use the method of addition (aka elimination), but any other method should work just as well.

So

1
2y dx+ 1

2x dy = 0 be
omes 2xy dx+ 2x2 dy = 0 (multiplying both sides by 4x), while 2x dx+ 2y dy = 0

be
omes 2xy dx+ 2y2 dy = 0 (multiplying both sides by y). Subtra
ting these equations gives (2x2 − 2y2) dy =
0, so either dy = 0 or x2 = y2. Now, x and y 
an 
hange freely as long as they re positive, but we have

limiting 
ases: x → 0+ and y → 0+. Sin
e x2 + y2 = 400, we see that x2 → 400 as y → 0; sin
e x is posi-

tive, this means that x → 20 as y → 0. Similarly, y → 20 as x → 0. In those 
ases, A = 1
2xy → 0. On the

other hand, if x2 = y2, then x = y (sin
e they are both positive), so x, y = 10
√
2, sin
e x2 + y2 = 400. In

that 
ase, A = 1
2xy = 100.

So the largest area is 100 square feet, and while there is no smallest area, the area 
an get arbitrarily

small with a limit of 0.

3.18 E
onomi
 appli
ations

In word problems in e
onomi
s or �nan
e, a few quantities arise regularly, whi
h you should know about.

• Quantity in this 
ontext has a spe
i�
 meaning: the amount of a good or servi
e made and/or sold

in a given period of time. Quantity is thus measured in su
h units as pounds per week, items per

year, or litres per hour. Quantity is variously denoted q or x.
• Pri
e (or unit pri
e) is the amount of money re
eived for a given amount of goods or servi
es. So

pri
e is measured in units su
h as dollars per pound or euros per item. Pri
e is denoted p, a lower
ase

letter.

• Revenue is the amount of money re
eived for goods or servi
es in a given period of time. Revenue is

measured in dollars per week, euros per year, et
. Revenue is denoted R, and we have this equation:

R = qp.

(Noti
e that the units make sense in this equation; amount over time, multiplied by money over amount,

be
omes money over time.)

• Cost is the amount of money that the business has to spend (in a given period of time) in order to

produ
e and distribute their goods and servi
es. (In this terminology, 
ost is 
ompletely di�erent

from pri
e.) Like revenue, 
ost is measured in units of money over time.

• Finally, pro�t is the amount of money that the business makes and keeps in a given period of time.

Unlike everything else here, it makes sense for pro�t to be negative. Pro�t is denoted P , an upper
ase

letter, and we have another equation:

P = R− C.

In business, you generally want to maximize pro�t: make it not only positive but as large as possible.

Even if you don t want to maximize pro�t as normally measured (be
ause you 
are about something else

besides money), e
onomists typi
ally try to 
al
ulate whatever else you 
are about and still say that you

maximize pro�t (in a generalized sense).
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For any of these quantities, we 
an dis
uss their average or marginal values. In this 
ontext, the aver-

age pro�t/
ost/et
 is the pro�t/
ost/et
 divided by the quantity:

P̄ =
P

q
, C̄ =

C

q
, . . . .

(As you 
an see, a bar is used to indi
ate this ratio. Be 
areful; when we get to appli
ations of integrals,

this bar will be used to denote an average in a di�erent way.) On the other hand, the marginal prof-

it/
ost/et
 is the derivative of pro�t/
ost/et
 with respe
t to quantity:

P ′ =
dP

dq
, C ′ =

dC

dq
, . . . .

(As you 
an see, a prime ti
k is used to indi
ate this derivative, whi
h is safe in 
ontext be
ause it always

means the derivative respe
t to q. For a derivative with respe
t to time, whi
h is also important in this


ontext even though we aren t doing any examples of that in this 
lass, a dot may be used instead.) Al-

though the units for a marginal or average quantity are the same, they represent di�erent things!

Finally, people also speak of the marginal average pro�t/
ost/et
:

P̄ ′ =
d(P/q)

dq
=

qP ′ − P

q2
= P ′ − P̄ ,

C̄ ′ =
d(C/q)

dq
=

qC ′ − C

q2
= C ′ − C̄,

.

.

.

The marginal pro�t is parti
ularly important, sin
e it must be zero when pro�t is maximized (as long as

the maximum pro�t o

urs when it is still possible to vary the quantity in any way desired); and sin
e the

marginal marginal pro�t (the se
ond derivative of pro�t with respe
t to quantity) is typi
ally negative,

the pro�t really will be maximized when the marginal pro�t is zero. However, in the absen
e of informa-

tion about the revenue, there is a rule of thumb that one should minimize the average 
ost instead, whi
h

means �nding where the marginal average 
ost is zero.
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4 Integrals

This is a summary of the 
on
epts of integral 
al
ulus.

4.1 De�nite integrals

Just as the di�erential of a �nite quantity is an in�nitesimal (in�nitely small) 
hange in that quantity, so

the de�nite integral of an in�nitesimal quantity is the sum of in�nitely many values of that quantity,

giving a �nite result. If x and y are standard quantities (neither in�nitely large nor in�ntely small), then

y dx is a typi
al in�nitesimal quantity. (An expression like this is 
alled a di�erential form.) If we add this

up from the point where x = a to the point where x = b, then we get the de�nite integral

w b

x=a
y dx.

As long as the same variable x is used throughout, then it s safe to abbreviate this as

w b

a
y dx.

For example,

r 5

3
(2t+ 4) dt is the sum, as t varies smoothly from 3 to 5, of the produ
t of 2t+ 4 and

dt (the in�nitesimal 
hange in t) at ea
h stage along the way. We 
an think of this produ
t as giving the

area of a re
tangle whose height is 2t+ 4 and whose width is dt; if we line these re
tangles up side by side,

then they 
ombine to give a trapezoid:
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We 
an �nd out the area of this trapezoid using geometry, sin
e its width is 5− 3 = 2 and its height varies

linearly from 2(3) + 4 = 10 to 2(5) + 4 = 14. Therefore,

w 5

3
(2t+ 4) dt =

10 + 14

2
· 2 = 24.

Normally, you 
an t evaluate an integral by drawing a pi
ture like this; I ll 
ome ba
k to how we 
an


al
ulate it after a brief digression.
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4.2 Antidi�erentials

If du = y dx, then y dx is the di�erential of u, as you know. We also say that u is an antidi�erential

of y dx. However, u is not the only antidi�erential of y dx; if C is any 
onstant, then d(u+ C) = y dx too,

so u+ C is also an antidi�erential of y dx. However, for a 
ontinuously de�ned quantity, there is no other

antidi�erential of y dx. Even if there are gaps in the de�nition of the quantity, we 
an say that u+ C is

an antidi�erential of du if and only if C is a lo
al 
onstant, meaning that it 
an 
hange value only a
ross

a gap where u is unde�ned. (Ultimately, this is a 
onsequen
e of the theorem that if the derivative of a

fun
tion on an interval is always zero, then that fun
tion must be a 
onstant; the relevant fun
tion here is

the di�eren
e between the fun
tions that give any two possible antidi�erentials.)

Antidi�erentials are denoted by `

r
', so we have

w
du = u+ C

by de�nition. (This looks similar to the notation for a de�nite integral, whi
h makes sense reasons that

will be explained below, but you 
an tell the di�eren
e be
ause there are no bounds atta
hed to the sym-

bol.) For example,

d(t2 + 4t) = 2t dt+ 4dt = (2t+ 4) dt,

so w
(2t+ 4) dt =

w
d(t2 + 4t) = t2 + 4t+ C.

As 2t+ 4 is the derivative of t2 + 4t with respe
t to t, we also say that t2 + 4t is an antiderivative of

2t+ 4 with respe
t to t. An antidi�erential or antiderivative is also 
alled an inde�nite integral; so `in-

de�nite integral of (t2 + 4) dt' (antidi�erential) and `inde�nite integral of t2 + 4 with respe
t to t' (antide-
rivative) both mean

r
(t2 + 4) dt.

To �nd antidi�erentials (or antiderivatives), we must run the rules for di�erentials (and derivatives)

ba
kwards. This is often a subtle pro
ess, whi
h I ll return to after a brief digression.

4.3 The Fundamental Theorem of Cal
ulus

The Fundamental Theorem of Cal
ulus relates de�nite and inde�nite integrals. There are two parts:

1. d
(w b

t=a
f(t) dt

)

= f(b) db− f(a) da;

2.

w b

t=a
df(t) = f(b)− f(a).

The �rst part applies whenever f is a 
ontinuous fun
tion (assuming that a and b are di�erentiable quan-
tities); in parti
ular, it 
laims that the integral exists and is di�erentiable. The se
ond part applies when-

ever f is a di�erentiable fun
tion (assuming that t is a di�erentiable quantity); in parti
ular, it 
laims that

the integral exists.

Although both of these parts refer dire
tly to de�nite integrals, inde�nite integrals (antidi�erentials)

appear impli
itly be
ause of the presen
e of the di�erentials. Spe
i�
ally, the �rst part 
laims that the

de�nite integral that appears in it is an antidi�erential of the di�erential form on its right-hand side, and

the se
ond part shows how to evaluate a de�nite integral of a di�erential form whose antidi�erential is

known.

If you want to express these without refering to the fun
tion f , then you 
an write them thus:

1. d
(w b

a
ω
)

= ω|ba;

2.

w b

a
du = u|ba.

Here, I m using ω to stand for an entire di�erential form (for whi
h people often use Greek letters) and

u|ba is short for u|b − u|a. These basi
ally say that d and

r

an
el as long as you move the bounds on the

integral into bounds on a di�eren
e.

It s the se
ond part of the theorem that we use the most. If you want to evaluate a de�nite integralr b

a
y dx, then you should �rst �gure out the inde�nite integral

r
y dx. If the answer to this is u (or more

generally u+ C), then this means that y dx = du; that is, u is an antidi�erential of y dx. Therefore,
r b

x=a
y dx =
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r b

x=a
du, and the FTC tells us that this is equal to u|bx=a. As this last expression is simply a di�eren
e,

you 
an �gure it out using simple algebra.

For example, 
onsider w 5

t=3
(2t+ 4) dt.

In the last se
tion, we saw that

r
(2t+ 4) dt = t2 + 4t+ C; in other words, (2t+ 4) dt = d(t2 + 4t). There-

fore, w 5

3
(2t+ 4) dt =

w 5

3
d(t2 + 4t) = (t2 + 4t)|53

=
Ä

(5)
2
+ 4(5)

ä

−
Ä

(3)
2
+ 4(3)

ä

= (45)− (21) = 24.

(Noti
e that this is the same answer as when I did this using geometry!)

This also explains why the same term `integral' and symbol `

r
' are used for both the de�nite integral

(a sum of in�nitely small quantities) and the inde�nite integral (the antidi�erential). They at �rst appear

to be 
ompletely di�erent 
on
epts, but in reality they are 
losely related, through the Fundamental Theo-

rem of Cal
ulus.

4.4 Integration te
hniques

This leaves us with one problem: how do we �nd inde�nite integrals?

Ea
h rule for di�erentiation gives us a rule for integration. In the table below, I have some rules for

di�erentiation (all of whi
h you should know by now), together with 
orresponding rules for integration:

d(u+ v) = du+ dv,
w
(y + z) dx =

w
y dx+

w
z dx;

d(ku) = k du (when k is 
onstant),

w
ky dx = k

w
y dx (when k is 
onstant);

d(uv) = v du+ u dv,
w
u dv = uv −

w
v du;

d(un) = nun−1 du (when n is 
onstant),

w
um du =

1

m+ 1
um+1 + C (when m 6= −1 is 
onstant);

d(eu) = eu du,
w
eu du = eu + C;

d(ln |u|) = 1

u
du,

w 1

u
du = ln |u|+ C;

d(sinu) = cosu du,
w
cosu du = sinu+ C;

d(cosu) = − sinu du,
w
sinu du = − cosu+ C;

et
.

Using these rules, you 
an work out all of the integrals in the textbook through Chapter 6, and then some.

For example, to �nd

r
(2t+ 4) dt:

w
(2t+ 4) dt =

w
2t dt+

w
4 dt = 2

w
t1 dt+ 4

w
dt = 2

Å

1

2
t2
ã

+ 4t+ C = t2 + 4t+ C.

This is the same answer as we got before, but this time I didn t have to guess the answer and get lu
ky; I

was able to a
tually 
al
ulate it. That s how you re going to be doing most of the problems.

For more 
ompli
ated integrals, there are fan
ier te
hniques. Rather than learn all of these, you 
an

program them into a 
omputer. There are even free websites that will do this for you!
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4.5 Summary

To �nd the inde�nite integral

r
y dx, you need to use integration te
hniques; your answer will still have the

variable in it and should end with a new lo
al-
onstant term C. To �nd the de�nite integral

r b

a
y dx, �rst

�nd the inde�nite integral and then take a di�eren
e; assuming a and b are 
onstants, your answer will
also be 
onstant (and the C will disappear).

So for example, to �nd the de�nite integral of 2t+ 4 with respe
t to t from 3 to 5:

w 5

3
(2t+ 4) dt =

w 5

3
(2t1 dt+ 4dt) =

Å

2

Å

1

2
t2
ã

+ 4t

ã

∣

∣

∣

∣

5

3

= (t2 + 4t)|53 = 45− 21 = 24.

This is simply a 
ombination of 
al
ulations that I did earlier, to �nd the inde�nite integral and to apply

the ft
.

4.6 Semide�nite integrals

Besides the de�nite integral

r b

a
f(x) dx and the inde�nite integral

r
f(x) dx, there is also a semide�nite

integral

r
a
f(x) dx. While the de�nite integral works out to a spe
i�
 value (as long as f , a, and b are

spe
i�ed), the inde�nite and semide�nite integrals still have the variable x in them. On the other hand,

while the inde�nite integral depends on an arbitrary C, the de�nite and semide�nite integrals don t have

this. So the semide�nite integral �ts in between the other two kinds.

Here is one way to de�ne it: w
x=a

f(x) dx =
w x

t=a
f(t) dt.

That is, introdu
e a new variable t and use the old variable x as the upper bound of a de�nite integal.

The Se
ond Fundamental Theorem of Cal
ulus,

w b

x=a
f(x) dx =

Ä

w
f(x) dx

ä

∣

∣

∣

b

x=a
=
Ä

w
f(x) dx

ä

∣

∣

∣

x=b
−
Ä

w
f(x) dx

ä

∣

∣

∣

x=a
,

also tells us how to evaluate semide�nite integrals:

w
x=a

f(x) dx =
w
f(x) dx−

Ä

w
f(x) dx

ä

∣

∣

∣

x=a
.

In other words, work out the inde�nite integral as usual; then, instead of evaluating this at two values of

the variable before subtra
ting, evalute it at one value and keep the variable in the other expression (then

subtra
t). For example,

w
x=1

x dx =
x2

2
−
Å

x2

2

ã

∣

∣

∣

∣

x=1

=
x2

2
−
(

(1)
2

2

)

=
1

2
x2 − 1

2
.

(You 
an probably skip the step with |x=1 in it, sin
e on
e you ve written down x2/2 before the minus

sign, you 
an immediately plug in 1 for x to get (1)
2
¿

2 after the minus sign.)

4.7 Integration by parts

Integration by parts is based on the Produ
t Rule for di�erentiation. In terms of di�erentials, the Produ
t

Rule says that d(uv) = v du+ u dv. Taking inde�nite integrals of both sides and rearranging the terms

slightly, this be
omes w
u dv = uv −

w
v du.

Unlike integration by substitution, you don t rewrite the problem in terms of u (nor v). Instead, you iden-

tify suitable u and v and their di�erentials and then write out the equation above in terms of x (or what-

ever your variable is).
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You want to pi
k u and v so that

r
u dv is the integral that you 
are about, whi
h means splitting up

the fa
tors of the integrand, some into u and some into dv. On
e you know u and dv, you 
an �nd du
and v, at least if you know how to integrate whatever dv is. (When you do this integration of dv to get

v, you have a 
hoi
e up to a lo
al 
onstant; you re de
iding what v is, so just pi
k the simplest expression.)

If you split things up well, then

r
v du will be simpler than what you started with.

Here is my advi
e on how to split fa
tors into u and dv so that integration by parts will make the

next integral easier. The items on the top of the list are the best 
hoi
es for dv, and the items on the bot-

tom are the best 
hoi
es for u. Put as many fa
tors as you 
an into dv, starting at the top of this list and

working your way to the bottom, as long as you still have something that you know how to integrate to

get v. Then put whatever fa
tors are left over into u.

• dx (this must go into dv),
• ex and other exponential expressions,

• sinx and other trigonometri
 expressions,

• polynomials and other algebrai
 expressions,

• lnx and other logarithmi
 expressions,

• asinx = sin−1 x and other inverse trigonometri
 expressions.

In 
ompli
ated 
ases, you may have to use integration by parts more than on
e. Just keep going until

either you get something that you 
an handle or you get ba
k to where you started. In the latter 
ase, you


an set up an equation to solve for your integral.
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5 Di�erential equations

A di�erential equation is an equation with di�erentials or derivatives in it. Here are three examples of

di�erential equations:

f ′(x) = 3f(x);

dy

dx
= 3y;

dy = 3y dx.

In fa
t, these three examples are all basi
ally equivalent. If you are given the �rst of these, then you should

make up a name for f(x), say y, and turn the �rst equation into the middle one. And in the middle equa-

tion, you should 
lear fra
tions to turn it into the last one. (But any of these might be the original form,

depending on how the equation is thought up in the �rst pla
e.)

To a
tually solve this equation, you 
an use the te
hnique of separation of variables. After rea
h-

ing the last equation, noti
e that x only appears on the right-hand side but y appears on both sides. If

you divide both sides by y, however, then y appears only on the left-hand side. (If y = 0, then dividing

by y is invalid; I ll 
ome ba
k to that later.) Then the variables are separated:

dy

y
= 3dx.

(If you re ever unsure whi
h side to put whi
h variable on, then try to put the di�erentials in the numera-

tors of any fra
tions. In this example, 1/dx = 3y/dy would have the variables separated just as mu
h, but

it would be less useful, be
ause the next step, below, wouldn t work.)

Now take the inde�nite integral of ea
h side of the equation:

w dy

y
=

w
3 dx;

ln |y|+ C1 = 3x+ C2;

ln |y| = 3x+ C2 − C1.

Ea
h integral gives an arbitrary 
onstant, and I subtra
ted to put them both on the right-hand side. How-

ever, sin
e C2 − C1 
ould itself be any 
onstant, you 
an just write this as

ln |y| = 3x+ C.

In pra
ti
e, you 
an skip the other steps with 
onstants and just remember to ta
k a 
onstant onto the

last integral in the equation.

We re not �nished; this equation is no longer a di�erential equation, but it also hasn t been solved for

anything. If we want to solve it for y, then we still need to do some algebra to get y by itself on its side of

the equation:

|y| = e3x+C
;

y = ±e3x+C
.

(If you re given an equation in x and y, then it s a good bet that they want you to solve for y; if you re
given an equation like the �rst example with a fun
tion in it, then it s a good bet that they want you to

solve for the fun
tion. But in prin
iple, you 
ould solve any of these equations for x instead.)

There is one mistake here, whi
h is the step where I divided by y. If y = 0, then this is invalid. Fur-

thermore, if y = 0 always, then the equation is true, be
ause then both sides of the original equation (in

any of the three forms) are 0. (This sort of spe
ial ex
eption is fairly 
ommon with di�erential equations.)

So a 
omplete solution is

y = ±e3x+C
or y = 0.
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You 
an make the �nal solution look a bit ni
er by writing ±e3x+C
as ±eCe3x and then making up a name

for ±eC , say P . Sin
e eC 
ould be any positive number, P 
ould be any positive or negative number; the

ex
eption y = 0 is 
aptured by P = 0. So the ni
est form of the �nal solution is

y = P e3x,

where P is an arbitrary 
onstant. (However, you shouldn t always expe
t to be able to do a simplifying

tri
k like that.)

Of 
ourse, if the original form of the equation is the �rst example, then you should write this solution

as

f(x) = P e3x.

5.1 Initial-value problems

An initial-value problem 
onsists of a di�erential equation together with enough data to determine the

arbitrary 
onstants. Here are three examples of initial-value problems:

f ′(x) = 3f(x), f(0) = 5;

dy

dx
= 3y, y|x=0 = 5;

dy = 3y dx, y|x=0 = 5.

Again, these three examples are all basi
ally equivalent; if y = f(x), then y|x=0 means f(0).
There are two ways to solve an initial-value problem. One is to ignore the initial value and just solve

the di�erential equation, at �rst. In this example, that gives us

y = P e3x,

as you ve seen. Then you put in the given values, whi
h in this 
ase gives

5 = P e3(0).

Now you 
an solve for P :
5 = P (1);

P = 5.

Therefore, the �nal answer to the initial-value problem is

y = 5e3x.

(Again, if the original form of the equation is the �rst example, then you should write this solution as

f(x) = 5e3x.)
Another te
hnique is to solve the entire problem at on
e with the help of semide�nite integrals (page 31).

Let s solve the example

dy = 3y dx, y|x=0 = 5

using semide�nite integrals. Again, separate the variables:

dy

y
= 3dx.

Now instead of taking inde�nite integrals of both sides, take semide�nite integrals, using the initial value

to guarantee that you re doing the same thing to ea
h side even though it s being done using di�erent vari-

ables. In this 
ase, sin
e y = 5 when x = 0, a semide�nite integral starting at y = 5 is the same operation

as a semide�nite integral starting at x = 0, so

w
y=5

dy

y
=

w
x=0

3 dx.
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Evaluating these using the ft
 gives

ln |y| − ln |5| = 3x− 3(0).

So 
ompared to the integration without the initial value, the di�eren
e is that we know whi
h spe
i�
 
on-

stants to use in ea
h integral. Now again, solve for y to �nish:

ln |y| = 3x− 0 + ln 5;

|y| = e3x+ln 5
;

y = ±5e3x.

This is not 
ompletely perfe
t, be
ause of the ±, but we 
an �gure this out by 
he
king whether y really

is 5 when x = 0; this will only be true if the sign is +. Finally, sin
e we did again divide by y while solv-

ing this, 
he
k to make sure that y is never zero in the solution; it s not, so the �nal answer is

y = 5e3x.

Of 
ourse, this is the same solution as we got before, but this time we got the entire solution all at

on
e without having to �rst get a solution with an arbitrary 
onstant and then solving for the 
onstant.

You may solve intial-value problems using whi
hever method you prefer.

5.2 Integrals as solutions to equations

Although we normally solve a di�erential equation by taking integrals, you 
an also think of an integral

as a solution to a di�erential equation. For example, the inde�nite integral

r
f(x) dx is the solution to

the di�erential equation dy/dx = f(x), and the semide�nite integral

r
x=a

f(x) dx is the solution to the

initial-value problem (dy/dx = f(x), y|x=a = 0). More generally, the solution to the initial-value prob-

lem (dy/dx = f(x), y|x=a = c) is
r
x=a

f(x) dx+ c. These kinds of initial-value problems are in Se
tions 4.8

and 5.5 of the textbook and are 
overed in Cal
ulus 1; more general di�erential equations and initial-value

problems are in Se
tion 7.2 and are 
overed in Cal
ulus 2.

(There are even more general di�erential equations than I have dis
ussed here, ones in whi
h it is im-

possible the separate the variables in the equation; some of these are 
overed in Chapters 16 and 17 of the

online-only version of the textbook. Yet more general di�erential equations are 
overed in S

 s 
ourse on

di�erential equations, whi
h is basi
ally Cal
ulus 4, but using a di�erent textbook dedi
ated to that sub-

je
t. Beyond that, there are graduate-level 
ourses that you 
ould take at a university; in fa
t, the study

of di�erential equations is a major �eld of a
tive resear
h in mathemati
s. We are very far from knowing

how to solve them all!)
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6 Sequen
es and series

A sequen
e is a fun
tion whose domain 
onsists only of integers. (It s not ne
essary that all integers be-

long to the domain, just that nothing else does.) To emphasize that we re 
onsidering a sequen
e, people

often write fn instead of f(n) when f is a sequen
e (and n is an integer in its domain). In fa
t, `f ' is not
a very 
ommon name for a sequen
e; `a' and `x' (or letters near them) are mu
h more 
ommon. Similarly,

the argument of a sequen
e is usually denoted by a letter near the middle of the alphabet (usually between

`i' and `n'), sin
e these letters are often used for integers. (Still, as with any other variable, you 
an use

any letter that you like in prin
iple.) There is also some redundant terminology: instead of speaking of the

input (or argument) and output (or value) of a fun
tion, we speak of an index and term of a sequen
e.

For example, if an = (−2)
n
, then the term with index 3 is a3 = (−2)

3
= −8. (Sometimes people say that 8

is the 3rd term, but this really only works if an is unde�ned when n < 1.)
Sin
e Cal
ulus is about 
ontinuously varying quantities and a sequen
e has only dis
rete values (at

most one for ea
h integer), there s not mu
h Cal
ulus to be done with a sequen
e. Nevertheless, there is

some: you 
an 
onsider the limit of a sqeuen
e approa
hing in�nity (or negative in�nity). That is, while

lim
n→c

an (for �nite c),
dan
dn

, and

w
an dn don t make sense, nevertheless lim

n→∞
an and lim

n→−∞
an 
an make

sense. I ll fo
us on the �rst of these, whi
h you 
an 
all simply the limit of the sequen
e, be
ause many

of our sequen
es will only be de�ned at natural numbers; however, limits approa
hing negative in�nity re-

ally aren t mu
h di�erent.

Sometimes it s 
onvenient to think of a sequen
e as the restri
tion to integers of some more general

fun
tion. For example, if you re working with the sequen
e an = 3n2
, then you 
an think of the fun
tion

f(x) = 3x2
; while f is de�ned for all real numbers and a is de�ned only for integers, otherwise they are

the same thing. Sin
e lim
x→∞

f(x) = ∞, this tells us that lim
n→∞

an = ∞ too. So most of the time, you 
an

work out the limit of a sequen
e in the same way that you work out any other limit approa
hing in�ni-

ty. If an = f(n) for n an integer and f has a limit (possibly in�nite) approa
hing in�nity, then a has the

same limit; this is a theorem. However, it s possible that a has a limit even when f does not, for example

if f(x) = sin (πx). This has no limit as x → ∞, sin
e all values between −1 and 1 are taken for arbitrarily

large values of x. When n is an integer, however, sin (πn) = 0, so the limit of the sequen
e an = sin (πn)
(whi
h is really just the sequen
e an = 0) is 0.

There are some more systemati
 ways of turning a sequen
e into a fun
tion that s de�ned everywhere

(or almost everywhere). These involve the �oor and 
eiling operations: the �oor ⌊x⌋ of a real number x
is the largest integer that s not larger than x, and the 
eiling ⌈x⌉ of x is the smallest integer that s not

smaller than x. Ever sin
e you �rst learnt to round numbers up and down, you ve been using these opera-

tions, even if you didn t have names for them; for example, ⌊2.37⌋ = 2 (round down to the nearest integer),

and ⌈2.37⌉ = 3 (round up to the nearest integer). Be 
areful with negative numbers: ⌊−2.37⌋ = −3, and
⌈−2.37⌉ = −2. An important inequality about �oors and 
eilings is

⌊x⌋ ≤ x ≤ ⌈x⌉.

As long as x is itself fra
tional (that is not an integer), then

⌊x⌋ < x < ⌈x⌉,

and in that 
ase you also have

⌊x⌋+ 1 = ⌈x⌉.
(But integers are an ex
eption; if x is an integer, then ⌊x⌋, x, and ⌈x⌉ are all equal to ea
h other.)

Using these operations, we 
an 
onvert any sequen
e into a fun
tion de�ned more generally: if a is a

sequen
e, then we 
an 
onsider a⌊x⌋ and a⌈x⌉. If a is de�ned for all integers, then these will be de�ned for

all real values of x; even if a isn t de�ned for all integers, still a⌊x⌋ and a⌈x⌉ will be de�ned for many more

real numbers. And now we have this theorem:

lim
x→∞

a⌊x⌋ = lim
n→∞

an = lim
x→∞

a⌈x⌉.
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These fun
tions a⌊x⌋ and a⌈x⌉ are unusual, sin
e they are (for most sequen
es) dis
ontinuous at every inte-

ger, but they 
an be handy to think about.

You 
an see a pi
ture of these in Figure 9.11 on page 501 of the textbook. (The textbook is using this

pi
ture for a di�erent purpose, although it is related, as you ll see later on.) In this pi
ture, the book be-

gins with a fun
tion f and then 
onstru
ts a sequen
e a out of it by de�ning an = f(n). Then on the top

(Figure 9.11.a), it shows the graph of y = f(x) in blue along with a graph of y = a⌊x⌋ = f(⌊x⌋) in magen-

ta; while on the bottom (Figure 9.11.b), it shows a graph of y = f(x) in blue again but now with a graph

of y = a⌈x⌉ = f(⌈x⌉) in magenta. You ll noti
e that the sequen
e and all three of the other fun
tions tend

to the same limit (whi
h in this 
ase is 0). Even if the textbook had started with a fun
tion f that did

not 
onverge to a limit, the sequen
e and the two fun
tions de�ned by �oor and 
eiling would still all 
on-

verge to the same thing.

6.1 Series

I wrote above that you 
an t do mu
h Cal
ulus on sequen
es; in parti
ular, I remarked that the deriva-

tive

dan
dn

and integral

w
an dn don t make sense. Ultimately, this is be
ause dn, an in�nitesimal (in�nitely

small) but non-zero 
hange in n, doesn t make sense when n takes only integer values; the smallest possi-

ble non-zero 
hange in n is a 
hange by 1, whi
h is not in�nitely small.

But there is something analogous to derivatives and integrals. The analogue to derivatives is the dif-

feren
e ∆nan = an+1 − an, whi
h is the di�eren
e of an with respe
t to n. (For example, ∆n(3n) =

3(n+ 1)− 3n = 3, and ∆m(m2) = (m+ 1)
2 −m2 = 2m+ 1, whi
h means that if n = m2

, then ∆mn =
2
√
n+ 1.) Whereas the derivative is de�ned as a limit of di�eren
e quotients, the di�eren
e simply is a

di�eren
e quotient where the 
hange in n is ∆nn = 1. (Unfortunately, sequen
es do not have an analogue

of the di�erential that will take 
are of 
hanging from one variable to another. This is be
ause ∆un ·∆mu
bears no parti
ular relationship with ∆mn, even assuming that all of the values of u are integers.)

The analogue to an integral is a series, whi
h is the result of adding up some of the terms of a se-

quen
e. (This word 
an be 
onfusing, in two ways. The �rst is a quirk of grammar: the plural of `series'

is just `series' again. You 
an say `serieses' as the plural, although this is nonstandard, but using `serie' as

the singular is just plain wrong. The other 
onfusing thing is that, in ordinary language, `sequen
e' and

`series' mean basi
ally the same thing; but in mathemati
s, a sequen
e is the more basi
 
on
ept, being

essentially just a list of numbers or other quantities, while a series is a sum that you build out of a se-

quen
e.)

Like di�eren
es, a �nite series has no Cal
ulus in it; you just add up some numbers. For example,

7
∑

n=3

(n2 + 1) =
Ä

(3)
2
+ 1
ä

+
Ä

(4)
2
+ 1
ä

+
Ä

(5)
2
+ 1
ä

+
Ä

(6)
2
+ 1
ä

+
Ä

(7)
2
+ 1
ä

= 10 + 17 + 26 + 37 + 50 = 140.

This means the sum of all of the values of n2 + 1 as n runs from 3 to 7, taking only integer values along

the way. That is, it s the sum of all of the values of n2 + 1 as n takes the values 3, 4, 5, 6, and 7, whi
h is

what I 
al
ulated.

Stri
tly speaking, this is analogous to a proper integral su
h as

w 8

x=3
(x2 + 1) dx. A
tually, this is more

than just an analogy: a series is an integral, albeit one whose Cal
ulus 
ontent is trivial. Spe
i�
ally,

j
∑

n=i

an =
w j+1

x=i
a⌊x⌋ dx =

w j

x=i−1
a⌈x⌉ dx.

(So in this example,

∑7
n=3 (n

2 + 1) =
r 8

x=3

Ä

⌊x⌋2 + 1
ä

dx.) Sin
e these are integrals of pie
ewise-
onstant

fun
tions, working them out is easy and just results in the original sum. So you don t want to evaluate a

series by turning it into an integral; still, it 
an be handy to know that this 
an be done, be
uase we know

a lot of theorems about integrals that now automati
ally apply to series.
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We traditionally speak of a sum from i = a to i = b, written
∑i=b

i=a or simply

∑b

i=a, where b− a is a

whole number (0, 1, 2, . . .); assuming for simpli
ity that a is an integer (so that b is also), this sum 
overs

every integer i that satis�es the inequality a ≤ i ≤ b, or in other words all of the integers in the interval

[a, b].
In some ways, it s better to think of su
h a sum as running from i = a to i = b+ 1, but with the last

item not quite in
luded; that is, the sum 
overs every integer i that satis�es the inequality a ≤ i < b+ 1,
or in other words all of the integers in the interval [a, b+ 1). Of 
ourse, from this perspe
tive, it s not the

number b that matters but the number b+ 1; if we 
all this B, then we 
an write

∑

a≤i<B for what is nor-

mally written as

∑b

i=a. Note also that it makes perfe
t sense to have B = a (in other words, b− a = −1);
then we are adding up no terms, and the sum is 0.

One ni
e 
onsequen
e is that the number of terms in the sum is simply B − a rather than b− a+ 1.
Perhaps more importantly, we have this theorem:

∑

A≤i<B

+
∑

B≤i<C

=
∑

A≤i<C

,

whi
h looks ni
er than

b
∑

i=a

+
c

∑

i=b+1

=
c

∑

i=a

.

The upshot of all of this is that, when you see (for example) a sum as i runs from 2 to 5, you might want

to think of it as a sum over 2 ≤ i < 6 instead.

Some of the formulas for summing 
ubi
 polynomials are slightly simpler. With the traditional num-

bering, we have these (from pages 295 and 296 of the textbook):

b
∑

i=0

c = c(b+ 1) if c is 
onstant;

b
∑

i=0

i =
1

2
b(b+ 1) =

Å

b+ 1

2

ã

;

b
∑

i=0

i2 =
1

6
b(b+ 1)(2b+ 1);

b
∑

i=0

i3 =
1

4
b2(b+ 1)

2
=

Å

b+ 1

2

ã2

.

(Here,

(n

r

)

=
n!

r! (n− r)!
,

where n! = n(n− 1)(n− 2) · · · (3)(2)(1), is an expression that you don t need to learn if you don t want to

but whi
h is used in many mathemati
al formulas.)

With the o�-by-1 numbering, we have these:

∑

0≤i<B

c = cB if c is 
onstant;

∑

0≤i<B

i =
1

2
B(B − 1) =

Å

B

2

ã

;

∑

0≤i<B

i2 =
1

6
B(B − 1)(2B − 1);

∑

0≤i<B

i3 =
1

4
B2(B − 1)

2
=

Å

B

2

ã2

.
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Espe
ially if you use

(B
2

)

, then some of these are simpler.

It s also handy to have more general formulas starting at an arbitrary pla
e rather than at i = 0 or 1.
With the traditional numbering, we have these:

b
∑

i=a

c = c(b− a+ 1) if c is 
onstant;

b
∑

i=a

i =
1

2
(a+ b)(b− a+ 1);

b
∑

i=a

i2 =
1

6
(2a2 + 2ab+ 2b2 − a+ b)(b− a+ 1);

b
∑

i=a

i3 =
1

4
(a2 + b2 − a+ b)(a+ b)(b− a+ 1).

With the o�-by-1 numbering, we have these:

∑

A≤i<B

c = c(B −A) if c is 
onstant;

∑

A≤i<B

i =
1

2
(B −A)(A+B − 1);

∑

A≤i<B

i2 =
1

6
(B −A)(2A2 + 2AB + 2B2 − 3A− 3B + 1);

∑

A≤i<B

i3 =
1

4
(B −A)(A+B − 1)(A2 +B2 −A−B).

These are now about equally 
ompli
ated.

6.2 In�nite series

Besides this, we also 
onsider in�nite series, whi
h are analogous to in�nite improper integrals. Just asw ∞

x=a
f(x) dx is de�ned as lim

b→∞

w b

x=a
f(x) dx, so an in�nite series is de�ned as a limit of �nite series:

∞
∑

n=i

an = lim
j→∞

j
∑

n=i

an,

or equivalently limJ→∞
∑

i≤n<J an; the �nite sum
∑j

n=i an (or

∑

i≤n<J an) is 
alled a partial sum of the

series. (As with in�nite integrals, you 
an also repla
e i with −∞, but we won t be doing that very often.)

Now there is a limit (and hen
e Cal
ulus) involved even for sequen
es. If this limit 
onverges (to a �nite

real number), then we say that the in�nite series 
onverges (to that number); otherwise, it diverges.

Sometimes it s useful to say that it diverges to ∞ or −∞ (if it does), but this still 
ounts as divergen
e.

You 
an also write ∞
∑

n=i

an =
w ∞

x=i
a⌊x⌋ dx;

that is, an in�nite series isn t merely analogous to an in�nite improper integral, it a
tually is an in�nite

improper integral, even if trying to evaluate this integral just turns it ba
k into the series. Again, look at

Figure 9.11.a on page 501 of the textbook; this time, ignore the fun
tion f and its blue 
urve, but noti
e

how the area under the magenta stair
ase (whi
h is the graph of a⌊x⌋, so the area under it is the integralw ∞

x=1
a⌊x⌋ dx) represents the in�nite sum a1 + a2 + · · · =

∑∞
n=1 an.
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It s important to distinguish 
onvergen
e of a series from 
onvergen
e of its sequen
e of terms. If we

think of the numbers a0, a1, a2, and so on as forming a sequen
e (a0, a1, a2, . . .), then this sequen
e 
on-

verges if its limit limn→∞ an exists; but if we think of them as the terms of a series, then this series 
on-

verges if its sum

∑∞
n=0 an exists, and this is the limit of the sequen
e of partial sums, not the limit of the

sequen
e of terms.

Nevertheless, there is a relationship between a series and its sequen
e of terms: the series 
an only


onverge if the sequen
e does, and in fa
t the series 
an only 
onverge if the sequen
e of terms 
onverges

to zero! This is be
ause the jth term is

aj =

j
∑

n=i

an −
j−1
∑

n=i

an;

if the series 
onverges, then

lim
j→∞

aj =
∞
∑

n=i

an −
∞
∑

n=i

an = 0

(sin
e j − 1 → ∞ as j → ∞), but if the series doesn t 
onverge, then this argument is invalid and limj→∞ aj

ould be anything. Be 
areful, however, sin
e this argument only goes one way; if the limit of the sequen
e

of term is zero, then that tells you nothing about whether the series 
onverges.

6.3 The Fundamental Theorem for series

In the analogy between sequen
es and fun
tions, where di�erentiation of fun
tions 
orresponds to di�er-

en
es of sequen
es and integrals 
orrespond to series, there is an analogue of the Fundamental Theorem of

Cal
ulus. Just as (d/dx)(
r x

t=a
f(t) dt) = f(x) (the �rst part), so

∆n

Çn−1
∑

m=i

am

å

= aj .

And just as

r b

x=a
(F ′(x)) = F (b)− F (a) (the se
ond part), so

j−1
∑

n=i

(∆nbn) = bj − bi.

(In ea
h of these, I had to stop the sum short by 1; for the full analogy, you should really think of

∑j−1
n=i

as

∑

i≤n<j , as des
ribed on page 38.)

The sum of a di�eren
e is 
alled a teles
oping series. A teles
oping series 
onverges pre
isely when

the original sequen
e (not the di�eren
e) 
onverges:

∞
∑

n=i

(∆nbn) = lim
j→∞

j−1
∑

n=1

(∆nbn) = lim
j→∞

(bj − bi) = lim
j→∞

bj − bi.

This result is so important that I ll repeat it without the di�eren
e notation (whi
h is not widely used):

∞
∑

n=i

(bn+1 − bn) = lim
j→∞

bj − bi.

Sometimes people prefer to write this as

∞
∑

n=i

(bn − bn−1) = lim
j→∞

bj − bi−1.
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Just as you 
an get a list of integrals that you 
an do by �nding the derivatives of basi
 fun
tions, so

you 
an get a list of series that you 
an do by �nding the di�eren
es of basi
 fun
tions. We 
ould do this

with polynomials, for example; although it doesn t 
ome out as simply as in the 
ontinuous 
ase, you 
an

derive formulas to sum any polynomial sequen
e. But an even simpler example is an exponential sequen
e.

That is, 
onsider the di�eren
e of rn with respe
t to n, where r is 
onstant.

∆n(r
n) = rn+1 − rn = rn(r − 1).

If anything, this is simpler than d(rx)/dx = rx lnx; the natural logarithm has been repla
ed by a simple

subtra
tion. Conversely, if you want to sum rn, you just need to divide by the 
onstant r − 1. So

∑

i≤n<J

rn =
rJ − ri

r − 1
,

whi
h is more 
ommonly written as

j
∑

n=i

rn =
ri − rj+1

1− r
.

Of 
ourse, this doesn t work if r = 1; for that,
∑J

n=i 1
n = J − i, or

∑j

n=i 1
n = j − i+ 1.

A series like this is traditionally 
alled a geometri
 series. The in�nite version 
onverges whenever

limJ→∞ rJ exists (for r 6= 1), whi
h happens pre
isely when |r| < 1, in whi
h 
ase the limit is a
tually 0.
(If r > 1, then the limit is ∞; if r = 1, then the limit is limJ→∞ J = ∞; if r = −1, then it os
illates be-

tween 1 and −1; and if r < −1, then it os
illates between ∞ and −∞.) Therefore,

∞
∑

n=i

rn = − ri

r − 1
=

ri

1− r

if |r| < 1.

6.4 Convergen
e tests

Here is a summary of all of the 
onvergen
e tests that we use in this 
lass. Every test has 
ertain 
on-

ditions under whi
h it gives no answer, and then you ll have to try a di�erent test. The �rst few terms are

always irrelevant to 
onvergen
e questions, so every 
ondition only refers to what the terms do eventually :

at some term aj and then for every term ak for k ≥ j. (I ll write a for the sequen
e of terms of the series;

that is, we are looking at

∞
∑

n=i

an

for some integer i.)
Every 
onvergen
e test, if it 
on
ludes that a series 
onverges, gives a sequen
e of approximations of

the sum of the series, along with an upper bound on the absolute value of the error of the approximations.

Usually, however, we 
annot 
ompute the sum of the series exa
tly.

The de�nition

Even the de�nition of 
onvergen
e 
an be viewed as a test. The sequen
e s in this test always exists; it s

the sequen
e of partial sums in the de�nition. The problem, however, is that you might not be able to �nd

a ni
e formula for it!

So, 
an you �nd a ni
e sequen
e s su
h that

sm =
m
∑

n=i

ai

(eventually)? If not, then this test gives no answer. If so, then go on.
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Does

lim
m→∞

sm

exist (as a �nite real number)? If not, then the series diverges. If so, then the series 
onverges.

In fa
t,

∞
∑

n=i

ai = lim
m→∞

m
∑

n=i

ai

when this limit 
onverges (by de�nition).

The Teles
oping Series Test

This is a slight variation of the de�nition that may be easier to spot. Can you �nd a ni
e sequen
e b su
h
that

an = bn+1 − bn

(eventually) or

an = bn − bn+1

(eventually)? If not, then this test gives no answer. If so, then go on.

Does the limit

lim
n→∞

bn


onverge (to a �nite real number)? If not, then the series diverges. If so, then the series 
onverges.

In fa
t,

∞
∑

n=i

(bn+1 − bn) = lim
n→∞

bn − bi

when this limit 
onverges, and

∞
∑

n=i

(bn − bn+1) = bi − lim
n→∞

bn

when this limit 
onverges.

The Geometri
 Series Test

Can you write the series as

an = crn

(eventually)? If not, then this test gives no answer. If so, then go on.

Is c 6= 0? If not, then the series 
onverges. If so, then go on.

Is |r| < 1? If not, then the series diverges. If so, then the series 
onverges.

In fa
t,

∞
∑

n=i

crn =
cri

1− r

when |r| < 1.

The nth-Term Test

This is probably the �rst test that you want to 
onsider, unless the series �ts one of the spe
ial forms

above.

Does

lim
n→∞

an


onverge to 0? If not, then the series diverges. If so, then this test gives no answer.
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The Integral Test

Can you �nd a ni
e fun
tion f de�ned everywhere (eventually, say de�ned on [j,∞)) su
h that f(n) = an
(eventually)? If not, then this test gives no answer. If so, then go on.

Does f take only nonnegative values (eventually)? If not, then this test gives no answer. If so, then

go on.

Is f monotone de
reasing (eventually)? If not, then this test gives no answer. If so, then go on.

Does w ∞

j
f(x) dx


onverge (to a �nite real number, for some j)? If not, then the series diverges. If so, then the series 
on-

verges.

In this 
ase,

m
∑

n=i

f(n) +
w ∞

m+1
f(x) dx ≤

∞
∑

n=i

f(n) ≤
m
∑

n=i

f(n) +
w ∞

m
f(x) dx,

for any m > j.

The p-Series Test

Can you �nd a real number p su
h that

an =
1

np

(eventually)? If not, then this test gives no answer. If so, then go on.

Is p > 1? If not, then the series diverges. If so, then the series 
onverges.

The Dire
t Comparison Test for Convergen
e

Does the series 
onsist of only nonnegative terms (eventually)? If not, then this test gives no answer. If

so, then go on.

Can you �nd a 
onvergent series b su
h that

an ≤ bn

(eventually)? If not, then this test gives no answer. If so, then the original series a also 
onverges.

The Dire
t Comparison Test for Divergen
e

Can you �nd a divergent series b su
h that

an ≥ bn

(eventually)? If not, then this test gives no answer. If so, then go on.

Does the series b 
onsist of only nonnegative terms (eventually)? If not, then this test gives no an-

swer. If so, then the original series a diverges.

The Limit Comparison Test

Does the series 
onsist of only nonnegative terms (eventually)? If not, then this test gives no answer. If

so, then go on.

Can you �nd a ni
e series b su
h that

lim
n→∞

an
bn


onverges to a positive real number? If not, then this test gives no answer. If so, then go on.

Does the series b 
onverge? If not, then the original series a also diverges. If so, then the original

series also 
onverges.
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The Absolute Convergen
e Test

Does the series ∞
∑

n=i

|ai|

of absolute values 
onverge (to a �nite real number)? If not, then this test gives no answer. If so, then

the original series 
onverges.

In this 
ase, we say that the original series 
onverges absolutely. If the original series 
onverges

(whi
h we 
an only know by some other test) while the series of absolute values diverges, then the original

series 
onverges 
onditionally.

The Ratio Test

Does the limit

lim
n→∞

|an+1|
|an|

exist (as a �nite real number or in�nity)? If not, then this test gives no answer. If so, then go on.

Is this limit di�erent from 1? If not, then this test gives no answer. If so, then go on.

Is this limit less than 1? If not, then the series diverges. If so, then the series 
onverges.

The Root Test

Does the limit

lim
n→∞

n
»

|an|
exist (as a �nite real number or in�nity)? If not, then this test gives no answer. If so, then go on.

Is this limit di�erent from 1? If not, then this test gives no answer. If so, then go on.

Is this limit less than 1? If not, then the series diverges. If so, then the series 
onverges.

The Alternating Series Test

Do we have either

an = (−1)
n |an|

or

an = −(−1)
n |an|

(eventually)? If not, then this test gives no answer. If so, then go on.

Do we have

|an+1| ≤ |an|
(eventually)? If not, then this test gives no answer. If so, then go on.

Does

lim
n→∞

|an|

onverge to 0? If not, then the original series diverges. If so, then the original series 
onverges.

In this 
ase,

m
∑

n=i

an ≤
∞
∑

n=i

an ≤
m+1
∑

n=i

an

if am+1 is positive, and

m+1
∑

n=i

an ≤
∞
∑

n=i

an ≤
m
∑

n=i

an

if am+1 is negative.

Other tests

There are other tests (and some of these tests 
an be made more powerful too), but these tests (in these

forms) are the only ones that you are responsible for knowing. In parti
ular, every 
onvergen
e problem

in this 
lass should su

umb, one way or another, to at least one of these tests. However, there is no end

to 
onvergen
e tests, and mathemati
ians are still developing new ones, while some series have resisted all

e�orts so far!
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7 Taylor series

One of the major appli
ations of in�nite series is to use series to approximate fun
tions that are di�
ult

to 
al
ulate. In this 
lass, we mostly 
on
entrate on series that approximate fun
tions that you re already

familiar with, be
ause then I 
an assign you problems that have de�nite answers. (However, the really use-

ful appli
ation is when you start with some other problem, su
h as an integral or a di�erential equation,

that you 
an

′
t work out exa
tly using the usual operations but whi
h 
an be expressed as an in�nite se-

ries.)

7.1 Taylor polynomials

Re
all that when a fun
tion f is di�erentiable at a number a, then we 
an approximate f near a with a

linear fun
tion that has both the same value and derivative as f does at a:

f(x) ≈ L(x) = f(a) + f ′(a) (x− a);

here, L is a linear fun
tion, L(a) = f(a), and L′(a) = f ′(a). This is a
tually only the beginning (well,

slightly after the beginning) of a whole sequen
e of approximations, ea
h (typi
ally) better than the one

before it:

f(x) ≈ P0(x) = f(a);

f(x) ≈ P1(x) = f(a) + f ′(a) (x− a);

f(x) ≈ P2(x) = f(a) + f ′(a) (x− a) +
1

2
f ′′(a) (x− a)

2
;

f(x) ≈ P3(x) = f(a) + f ′(a) (x− a) +
1

2
f ′′(a) (x− a)

2
+

1

6
f ′′′(a) (x− a)

3
;

.

.

.

(The fun
tion that used to be 
alled L is now 
alled P1.) The general form of this is

f(x) ≈ Pk(x) =
k

∑

n=0

1

n!
f (n)(a)(x− a)

n
.

(Re
all that f (n)
is the nth derivative of f .) Of 
ourse, f must be di�erentiable at a at least k times for

Pk to make sense.

The fun
tion Pk is the Taylor polynomial of f at a of order k. The Taylor polynomial of f at 0
of order k is also 
alled the Ma
laurin polynomial of f of order k. This terminology is standard (ex-


ept for some variations in the phrase `of order' that you may see); however, the notation Pk is not stan-

dard (and in prin
iple it ought to mention f and a as well as k). Stri
tly speaking, Taylor polynomials are

polynomial fun
tions rather than polynomials as su
h (whi
h are simply algebrai
 expressions without any

variable pi
ked out); otherwise, you d have to mention the variable x as well.

Noti
e that a Taylor polynomial Pk of order k is a polynomial fun
tion of degree at most k. (The de-
gree is normally exa
tly k, but it s smaller if f (k)(a) happens to be 0.) Also, the nth derivative of Pk at a
agrees with that of f , if n ≤ k; that is,

Pk
(n)(a) = f (n)(a)

if n ≤ k. (On the other hand, if n > k, then Pk
(n)(a) = 0, whi
h is always the 
ase for a higher-order deriva-

tive of a polynomial fun
tion when the order of the derivative is greater than the degree of the polynomi-

al.) The Taylor polynomial of f at a of order k is the only polynomial fun
tion of degree at most k whose

derivatives at a of order up to k agree with those of f .
Sin
e polynomials are easy to work with, it s 
onvenient to make approximations like these. But in

pra
ti
e, it s also important to know how good the approximations are. Sin
e these approximations are

based on the behaviour of f at a, we 
an really only expe
t them to be good when x ≈ a. So one way to
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say that these approximations work is to say that Pk(x) approa
hes f(x) (or more formally that the er-

ror of the approximation, |Pk(x)− f(x)|, approa
hes 0) as x approa
hes a. This is true for k = 0 if f is


ontinuous at a, and for k > 0 if f is di�erentiable k times at a. But in fa
t, the higher-order Taylor poly-

nomials satisfy a stronger 
ondition:

lim
x→a

|Pk(x)− f(x)|
|x− a|k

= 0,

whi
h is 
alled (one version of) Taylor s Theorem. As x approa
hes a, of 
ourse |x− a| approa
hes zero,
so dividing by |x− a| would tend to make a positive quantity larger. So Pk is su
h a good approximation

to f that the error not only approa
hes zero but still approa
hes zero even after dividing by |x− a| several
times.

When investigating these questions, it s helpful to 
hange perspe
tive slightly. Write Rk for f − Pk,

the Taylor remainder of f at a of order k. Then the statement above, showing what a good approxima-

tion Pk is, be
omes

lim
x→a

|Rk(x)|
|x− a|k

= 0.

This is good to know, but it may not really be enough; it tells us that moving x 
lose to a will make the

approximation better, and very qui
kly; roughly, when x is already 
lose to a, then moving it twi
e as


lose will make the approximation 2k times better, or you 
an make the approximation one de
imal digit

more a

urate by moving x only

k
√
10 times as 
lose. However, this doesn t tell us how a

urate the ap-

proximation was to start with, nor how 
lose x has to be for this method of improving the approximation

to start working.

We 
an get better results if f is di�erentiable one more time (k + 1 times, not just k times) and near a
(not just at a). This strong version of Taylor s Theorem says that

Rk(x) =
(x− a)

k+1

k!

w 1

t=0
(1− t)

k
f (k+1)(a− at+ xt) dt,

as long as f is 
ontinuously di�erentiable k + 1 times (at least) between a and x. (The integral here may

exist even if f is not 
ontinuously di�erentiable k + 1 times, but then the value of this integral might not

equal the remainder.) To be more expli
it, here is the statement for the �rst few values of k:

f(x) = f(a) + (x− a)
w 1

t=0
f ′(a− at+ xt) dt

= f(a) + f ′(a)(x− a) + (x− a)
2
w 1

t=0
(1− t)f ′′(a− at+ xt) dt

= f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)

2
+

(x− a)
3

2

w 1

t=0
(1− t)

2
f ′′′(a− at+ xt) dt

.

.

.

These statements may be proved by repeated appli
ation of integration by parts (and the Fundamental

Theorem of Cal
ulus, whi
h is why f (k+1)
must not only exist but also be 
ontinuous). To be spe
i�
, you


an prove ea
h statement using u = (1− t)
k
¿

k! and v = (x− a)
k
f (k)(a− at+ xt), integrating by parts,

simplifying, and (if appli
able) applying the previous statement.

For purposes of approximation, it s useless to a
tually work out the integral that appears here; if you

knew the exa
t value of f (k+1)
at all of the points between a and x, then you 
ould probably just evalu-

ate f at x dire
tly. However, if there is a value Mk su
h that you know that f (k+1)
never has an absolute

value greater than Mk at any point between a and x, then you 
an use Mk to get a bound on the remain-

der:

|Rk(x)| ≤
Mk

(k + 1)!
|x− a|k+1

.
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The reason for this is that we know that Rk(x) is exa
tly the integral that appeared in the full version of

the theorem, and we 
an bound its absolute value using the bound on its integrand:

|Rk(x)| =
∣

∣

∣

∣

(x− a)
k+1

k!

w 1

t=0
(1− t)

k
f (k+1)(a− at+ xt) dt

∣

∣

∣

∣

≤ |x− a|k+1

k!

w 1

t=0
(1− t)

k
∣

∣f (k+1)(a− at+ xt)
∣

∣ dt

≤ |x− a|k+1

k!

w 1

t=0
(1− t)

k
Mk dt =

|x− a|k+1

k!

Mk

k + 1
=

Mk

(k + 1)!
|x− a|k+1

.

To be more spe
i�
:

|R0(x)| = |f(x)− f(a)| ≤ M0 |x− a|

if |f ′| is never greater than M0 between a and x,

|R1(x)| =
∣

∣

∣
f(x)−

Ä

f(a) + f ′(a)(x− a)
ä

∣

∣

∣
≤ 1

2
M1 |x− a|2

if |f ′′| is never greater than M1 between a and x,

|R2(x)| =
∣

∣

∣

∣

f(x)−
Å

f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)

2
ã

∣

∣

∣

∣

≤ 1

6
M2 |x− a|3

if |f ′′′| is never greater than M2 between a and x, et
. Note that this upper bound on the absolute value

of the remainder is basi
ally the absolute value of the next term that you would add if you went one step

further, ex
ept that instead of using a derivative at a, you must use the largest derivative (in absolute val-

ue) anywhere between a and x.

7.2 Taylor series

We 
an extend from polynomials to power series and get the Taylor series of f at a:

P∞(x) =
∞
∑

n=0

1

n!
f (n)(a)(x− a)

n
.

(When a = 0, this is the Ma
laurin series of f .) This power series exists as long as f is in�nitely di�er-

entiable at a, that is as long as f has derivatives of all orders at a. However, there are no theorems guar-

anteeing that this series 
onverges, nor that it s anything like f(x) when it does 
onverge (ex
ept that it

must 
onverge to f(a) when x = a exa
tly). We say that f is analyti
 at a if this series 
onverges to f(x)
at least on some interval around a. Any fun
tion built out of the usual operations* is analyti
, as long

as it s in�nitely di�erentiable, so everywhere that it is de�ned ex
ept where an absolute value or a root

(or a power with a fra
tional exponent) is applied to 0 or an inverse trigonometri
 sine, 
osine, se
ant, or


ose
ant is applied to ±1. However, there are fun
tions for whi
h the Taylor series exists but fails to 
on-

verge (ex
ept when x = a exa
tly); the only examples that I know are de�ned themselves as series, su
h

as f(x) =
∑∞

n=0 e
−
√
2n cos (2nx) (whi
h is not a power series but still 
onverges everywhere by the Root

Test). There are also fun
tions for whi
h the Taylor series 
onverges but not to f(x) (ex
ept when x = a

exa
tly); an example of this (with a = 0) is f(x) =

ß

e−x2

for x 6= 0,
0 for x = 0.

* addition, subtra
tion, multipli
ation, division, taking opposites, taking re
ipro
als, taking absolute

values, raising to the power of a 
onstant, raising to a power when the base is positive, taking roots with a


onstant index, taking roots with a positive radi
and, taking logarithms, the six trigonometri
 operations,

and the six inverse trigonometri
 operations
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There are several famous Taylor series of analyti
 fun
tions that you should know:

xk =
∞
∑

n=0

(

k

n

)

(x− 1)
n
for 0 < x < 2;

ex =
∞
∑

n=0

xn

n!
;

lnx =
∞
∑

n=0

(−1)
n

n+ 1
(x− 1)

n+1
for 0 < x ≤ 2;

sinx =
∞
∑

n=0

(−1)
n

(2n+ 1)!
x2n+1

;

cosx =
∞
∑

n=0

(−1)
n

(2n)!
x2n

;

atanx =
∞
∑

n=0

(−1)
n

2n+ 1
x2n+1

for −1 ≤ x ≤ 1.

(You 
an 
he
k that these are Taylor series for the 
laimed fun
tions by 
he
king the fun
tions deriva-

tives, and you 
an prove that these series 
onverge for the 
laimed values of x using the usual 
onvergen
e

tests, but it takes more work to prove that they 
onverge to the 
laimed fun
tions. Mu
h of this is proved

in the textbook in Se
tions 9.7�9.10.)

The formula for xk
may seem parti
ularly useless, and it mostly is when k is a whole number, but it

is valid for any real number k, su
h as k = −1 (for 1/x), k = 1/2 (for

√
x), et
. This formula in
ludes

(k
n

)

,

the binomial 
oe�
ient of k with index n, whi
h is de�ned by

(

k

n

)

=
kn

n!
=

k(k − 1)(k − 2) · · ·
Ä

k − (n− 1)
ä

n(n− 1)(n− 2) · · · 1 ;

that is, the binomial 
oe�
ient is a fra
tion whose numerator and denominator ea
h 
onsists of n fa
tors,

with the denominator beginning at n to produ
e n! and with the numerator beginning at k to produ
e kn,

the falling power of k with index n (so in parti
ular, n! = nn
). Just as 0! = 1, so

(k
0

)

= 1
1 = 1; anoth-

er useful fa
t is that

(−1
n

)

= (−1)
n
. (There is really a lot to be said about this stu�, whi
h is part of the

bran
h of mathemati
s 
alled 
ombinatori
s, but the only thing that you re responsible for is to 
al
ulate

n! and
(k
n

)

for spe
i�
 values of k and n.)
When you use these formulas, you may need to substitute some other expression for x, and you may

need to start a sum at some other index. For example, if you want to evaluate

∞
∑

n=3

xn

n
,

then the important thing to noti
e is that the denominator is the same as the exponent (rather than the

fa
torial of the exponent, as in some of the formulas) and that almost every natural number appears as an

exponent (rather than only odd numbers or only even numbers, as in some of the formulas), whi
h means

that it s the formula for lnx that s relevant. To get the exponent in the right form, 
hoose m so that n =
m+ 1; that is, m = n− 1. You now have

∞
∑

m=2

xm+1

m+ 1
.
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To get the right base, you might 
hoose y so that x = y − 1; however, to get the fa
tor of (−1)
n
as well,

you should a
tually 
hoose y so that x = −(y − 1). That is, y = 1− x, so you now have

∞
∑

m=2

Ä

−(y − 1)
ä

m+1

m+ 1
=

∞
∑

m=2

(−1)
m+1

m+ 1
(y − 1)

m+1
= −

∞
∑

m=2

(−1)
m

m+ 1
(y − 1)

m+1
.

Now you 
an mat
h this against the formula for lnx, using m in pla
e of n and y in pla
e of x, with an

extra minus sign out front and with the �rst two terms missing. Sin
e these missing terms are

1
∑

m=0

(−1)
m

m+ 1
(y − 1)

m+1
=

1

1
(y − 1)

1
+

−1

2
(y − 1)

2
= −1

2
y2 + 2y − 3

2
,

the original series equals −
Ä

ln y − (−1/2 y2 + 2y − 3/2)
ä

= − ln y − 1/2 y2 + 2y − 3/2 whenever 0 < y ≤ 2.
Remembering that y = 1− x, you 
an �nally 
on
lude that

∞
∑

n=3

xn

n
= − ln (1− x)− 1

2
(1− x)

2
+ 2(1− x)− 3

2
= − ln (1− x)− 1

2
x2 − x for −1 ≤ x < 1.

Some of these formulas appear in slightly di�erent forms in the textbook; one version may be more 
onve-

nient for a parti
ular problem than another, but either version should su�
e for all of the relevant prob-

lems.
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