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Welcome to Calculus! Here are my supplemental notes for one-variable Calculus, giving alternative ways
to think about some things, practical advice, and sometimes more theoretical detail.

This does not cover everything that you need to know; you should also have the official course text-
book, which is the 3rd Edition of University Calculus: Early Transcendentals by Hass et al published by
Addison-Wesley (Pearson). There are also some references in these notes to that textbook. Conversely,
there is some material in here that you don’t need to know, although I hope that it will be helpful; T'll
generally make a note of that when it happens.

For Calculus 2 (MATH-1700), there is an additional set of notes on multivariable Calculus, which I
will hand out later in that class.

Contents

1 Preliminaries (page 2)

Limits and continuity (page 7)
Differentiation (page 15)
Integrals (page 32)

Differential equations (page 37)
Sequences and series (page 40)
Taylor series (page 49)

N O U W N



1.1

1 Preliminaries

Before beginning this class, you should be familiar with the basic algebraic properties of real numbers and
real-valued functions of real numbers.

Numbers

By default, all of the numbers that we work with will be real numbers. (Most of Calculus applies just as
well to complex numbers, but a complete understanding of Calculus in even one complex variable requires
some ideas from multivariable Calculus, which these notes do not cover.) In particular, if a is a negative
number, then ¥/a is undefined when n is an even integer and negative when n is an odd integer. More
generally, if a is a negative number, then a? is defined only if p is a rational number whose denominator in
lowest terms is odd; in this case, a? is positive if the numerator of p is even and negative if the numerator
of p is odd. Note that (a2)1/2 = Va2 = |a|, while a*1/2 = ¢! = a, which is different when a is negative, so
the rule that (a*)? = a®¥ does not hold in general (although it does hold when a is a positive number).

Although 0% is undefined whenever z is negative (because this amounts to dividing by zero), we need
to define 0° = 1 in order to make some formulas work correctly. Although the textbook says that 0° is un-
defined, this contradicts some things that that book says about polynomials and power series. (Section 9.7
of the official textbook, beginning with the definition of power series on page 523, is the first place where
this is important; see also the discussion of power series starting on page 46 in these notes.) It's possible
to take a more nuanced approach, where 0 is 1 when x is an integer-valued variable with the value 0
while 0% is undefined when z is a real-valued variable with the value 0; however, this makes the meaning
of 0° ambiguous without context, so for simplicity, I prefer to just say that 0° = 1. Nevertheless, this will
require some care when it comes to rules for evaluating limits.

When we use trigonometric operations, they will always apply to angle measures in radians. Actually,
it's best to think of these as operations on pure numbers, with the geometric application to angles as just
one use of them. So sinz and cosz are defined for any real number z, sin (x + 27) is always the same as
sinz, etc. Also, for the inverse trigonometric functions, I write asinx for the unique real number such that
—7/2 < asinz < 7/2 and sin (asinz) = x (if there is any such number at all, which there will be if and
only if —1 < < 1); this number is also variously written arcsinz, Sin~' z, or (as in the textbook) sin™* z.
Note that I also use —7/2 < acscx < 7/2; some Calculus textbooks do this differently, but I am agreeing
with our official textbook in this respect.

The main difference between my approach to Calculus and the textbook's is that I make more use
of differentials. Calculus was originally developed using differentials, and many calculations are easier to
do this way. Furthermore, differentials are often used in applications, especially (but not only) to phys-
ics. They fell out of fashion with mathematicians towards the end of the 19th century, when Calculus was
first put on a rigorous logical foundation, because this foundation did not include differentials. However, a
rigorous logical development of differentials as well had been achieved by the early 20th century, so there
is no longer any reason to avoid them. You can do almost everything with the textbook's methods if you
want, but I encourage you to try using differentials. (This will be especially fruitful if you go on to take
multivariable Calculus, where differentials are even more convenient.)

A related (but distinct) issue is the question of infinitely small (but nonzero) numbers. We say that a
number is infinitely small, or infinitesimal, if its absolute value is less than 1, less than 1/2, less than 1/3,
etc. In the real number system as we now understand it, the only infinitely small number is 0; however, in
the early days of Calculus, people reasoned in terms of nonzero infinitesimal numbers (and their recipro-
cals, which are infinitely large numbers) quite often. I will discuss this occasionally, because they can be
useful for intuitive understanding, but this is entirely optional; I'll make no attempt at a complete or rig-
orous discussion of such numbers, although I'll try to make sure that everything that I say about them is
at least true. (Infinitesimal numbers were the last concept to be made fully rigorous, but even so, this was
done in 1960, probably well before any of us was born.)
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1.2

1.3

Sets

Geometrically, a set of real numbers is a region within the number line; for each number ¢, you should be
able to say (in principle) whether ¢ is in the set or not. That is, if ¢ is a number and A is a set, then ¢ € A
is a statement that may be true or false. When it is true, we say that ¢ is an element and member of A,
that ¢ belongs to A, and that A owns c. Although one can talk about sets whose elements are anything at
all (even other sets) rather than just real numbers, the default meaning of ‘set’ in this class is a set of real
numbers. Note that both the entire real line (written R, R, or (—o00,00)), which owns every real number,
and the empty set (written @ or {}), which owns nothing at all, count as the extreme examples of sets of
real numbers.

In general, you can define a set by picking a variable (say z) to stand for an arbitrary real number
and writing down a statement about that number (using that variable) so that = belongs to the set if and
only if the statement is true. For example, you might define a set A by saying that, for each real num-
ber z, x € A if and only if z < 2. (Note that ‘if and only if’ goes both ways: if z € A, then z < 2; and if
x < 2, then z € A.) You can write this as A = {z | x < 2}, or {z € R | < 2} to emphasize that it's a
set, of real numbers. Or if you don't want to give the set a name like A, then you can refer to the set di-
rectly as {z | < 2}. Then given any real number ¢, ¢ € {z | z < 2} if and only if ¢ < 2. For example,
1e{z |z <2}, because 1 < 2; but 3 ¢ {x | x < 2}, because 3 £ 2 (where the slashes indicate that some-
thing is not true).

Besides this, we will often have to deal with intervals, which are particular sets of real numbers, so
there is a special notation for them. If @ and b are real numbers with a < b, then [a, ], [a,b), (a,b], and
(a,b) are all sets (the intervals from a to b, or with a and b as endpoints), consisting of all of the numbers
strictly between a and b, as well as possibly the endpoints a and b themselves; an endpoint belongs to the
interval if the bracket on that side is square but not if it is round. We can also use —oo in place of a or oo
in place of b (or both), to indicate that the interval continues forever in that direction; but because —oco
and oo are not real numbers, the brackets next to them must always be round. In other words:

[a,b] ={z|a <z <b}; [a,b) ={z | a <z <b}; [a,00) ={z |z >a};
(a,b) ={z ] a <z <b}; (a,b) ={z|a<z<b}; (a,00) ={x |z > a};
(700,17] :{$|:U§b}, (*Ooab):{x|m<b}; (700,00):]3“

We call [a, b], [a,o0), (—00,b], and (—oo, 00) closed intervals; they include all of the endpoints that they
can. Conversely, we call (a,b), (a,00), (—00,b), and (—o0, 00) open intervals; they include none of their
endpoints. (Notice that [a,b) and (a, b] are neither open nor closed, while (—o0, 00) is both.) Also, the in-
tervals that don't involve any kind of infinity are called bounded intervals. In particular, the closed bound-
ed intervals of the form [a, b] are called compact intervals. These will all be useful notions from time to
time.

Although I said above that a < b for the endpoints of an interval, we also allow a = b for compact in-
tervals; however, [a, a] is more commonly written simply {a}; that is, curly brackets with the single ele-
ment a listed within them. (If there are more elements, then you can list these separated by commas, but
then the set will no longer be an interval.) If you're talking about a compact interval [a, b] and want to
ensure that a < b, then you can speak of a nontrivial compact interval. This is usually just a technicality,
however.

Functions

Another difference between these notes and the textbook is that I will never be sloppy with function nota-
tion.
In an expression such as

y = f(=),

the variables  and y stand for real numbers, while the variable f stands for a function. (Usually this vari-
able is actually a constant, because f always refers to the same function throughout the problem, although
there can also be situations where the function itself is allowed to vary.) A function is not a number but
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1.4

rather a process for turning one number into another. When speaking of specific numbers, this is usual-
ly not a problem; for example, f(2) =4 means that the function f is a process that (among other things)
turns the number 2 into the number 4.

The statement that f(x) = 2?2 is more ambiguous; in a context where the variable z already appears,
this means that the function f is a process that (among other things) turns the number z (whatever num-
ber that is) into the number 22. But in a context where 2 does not already have a meaning, this state-
ment usually means that the function f is a process that turns every real number into its square, which is
a complete description of the function. In this case, it is better to say something like

f(x) = 22 for all z,

and I will usually say something like this.
Another way to completely describe this function is to write

f=(z — z?).

This is analogous to defining a set S as S = {z | © > 2}; in each case, you introduce a new dummy variable
and then you either give an expression (to define a function) or else you give an equation, inequality, or
other statement (to define a set), in each case using that dummy variable. You can even do this without
giving the function (or set) a name, by (for example) just referring to the function (z + 2?2) or the set
{z | x > 2}; this is called anonymous function notation. Although the textbook does this with sets, it
never does this with functions; so I won't do it much either. It can be very handy, however.

The real problem is when the same symbol is used both to refer to a function and to its output value,
as in

A= A(x),

which you might see (for example) in a problem in which the area of some shape depends on something
else. I will never do this! Either I will use A to refer to the area itself, or I will use A to refer to the func-
tion that indicates how this area depends on z (whatever that may be in this situation), but I will not use
the same symbol for both of these. If I need to refer to both of these, then I will use two different sym-
bols. Most of the time, however, it's enough to have a symbol for the area itself and to leave the function
unnamed. (The evaluation notation described on page 6 can help with this.)

When we cover derivatives later on, you will learn various symbols used for this concept; and when
y = f(x), then I will also write

dy

dr Zf/(x)-

(What this means is explained on page 14.) The textbook will sometimes write 3 or df/dx in this situa-
tion, but I never will, and this is important to ensure that the ordinary rules of algebra continue to apply
to such expressions. (For example, you can multiply both sides of the equation above by dz to get dy =
f/(z) dz, which would be difficult to do correctly using the wrong symbols.) I will not count it against
you if you are as sloppy as the textbook about this, because I don't think that it's fair to require you to
do more than the textbook writers do; however, if you get confused by your notation and make a mistake,
then that will count against you! So I encourage you to use precise notation.

Variables

In Calculus, we study wvariable quantities, that is quantities whose values may vary (or change).

In Algebra, we often use the word ‘variable’ to refer to any quantity whose value we don't know, even
if this value is fixed and never changes throughout the problem. In fact, the standard Algebra problem,
solving an equation such as 2x + 3 = 5, involves figuring out the value of the variable; so it had only one
value all along, and we just had to figure out what it was. So if x is a variable in an Algebra problem, and
at some point we decide that the value of z is 1, then this may well mean that x is 1 throughout the entire
problem. (That's not always the case in Algebra, but it often is.)
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In Calculus, we take the word ‘variable’ more seriously. If  is a variable in a Calculus problem, then
2 might be 1 at some point, but it will probably be 6 at some other point in the problem. (And more of-

ten than not, it will take all of the values in between 1 and 6 along the way, such as 1%, 7, and 5.789.)
Furthermore, if x and y are two variables that appear in the same problem, then the value of y will usual-
ly change as the value of x changes. Calculus is primarily about exactly this sort of thing: how one quan-
tity changes as another quantity changes.

In the simplest cases, it turns out that y is a function of x; that is, there is a fixed function f such
that y = f(x) remains true as z and y vary. Calculus textbooks generally try to fit everything into this
mould, but it doesn't always come out like this naturally. Often, you know that both z and y are chang-
ing, but it's not obvious that the value of x at some point is enough information to figure out the value
of y at that point; yet when you write y = f(x), you're assuming that it is enough information.

Nearly all of the time, however, we can assume that there is some variable ¢, called the independent
variable, such that every other variable in the problem is a function of ¢t. That is, if z and y appear in the
problem, then there are fixed functions g and h such that = ¢(¢t) and y = h(¢) throughout the problem.
(Then x and y are called dependent variables, since their values depend on the values of ¢, through the
functions g and h.) If it also happens that y = f(z) throughout the problem, then this means that h is the
composite function f o g; but if that doesn't happen, then at least we still have g and h.

However, this variable ¢ might not show up directly! Calculus books will usually tell you (especially in
word problems) that it's necessary to pick an independent variable from among the variables that appear
in the problem, but really it's enough to informally visualize the range of variation in the problem, and
you can treat all of the variables on an equal footing. All the same, for the sake of formal definitions, I
will assume that there is an independent variable ¢ and that every other variable is a function of it, even
though in practice we don't have to identify it. (Of course, you don't have to call the independent variable
‘t’, but I usually will, just to have a consistent name.)

If we're not going to refer directly to ¢, then we're not going to refer directly to g and h either, only to
the quantities x and y; so we need some way to refer to the values of these quantities without referring to
the functions that determine them. Here is how we do it formally:

If u= f(t), then u|,_. = f(c).

(This is called evaluation notation.) More generally, if P is some statement that is only true once, then
P implies the statement ¢ = ¢ for some value of ¢, so we can make sense of u|p. Even if P is a statement
that might not only be true once, as long as every possible value of u|, is the same, then we can still make
sense of u|p. Finally, even if there are different possible values of u|p, then the value of u|p still varies,
but at least it doesn't vary as much as u itself, since there are now fewer possibilities.

This all sounds very abstract (because it is), but the concrete application is straightforward; here are
some examples:

T ‘x:5 =9,
2z +3)|,_, =2(4)+3 =11,
(2x + 3y)|z:§, =2(4) +3(5) = 23.
y—

Taking the last of these for example, there is no need to think about what ¢ is when x = 4 and y = 5, and
indeed without considering how x and y depend on this unspecified independent variable ¢, the value of ¢
is impossible to know. Nevertheless, we know that no matter what ¢ may be, if t =4 and y = 5 at that
value of ¢, then u = 2z + 3y is definitely 2(4) + 3(5) = 23 at that same value of ¢, and that is enough. So
all that you have to do in practice is to plug in the given values and perform the given calculation.

Sometimes (generally only in the middle of a problem or in something theoretical) you can't work out
the value completely; for example,

(22 4 3y)|,—q = 2(4) + 3(ylo—y) = 8+ 3Yl,—s-

If we don't know anything more about the relationship between x and y, then we don't know the value
of y when x = 4, so this is all that we can say in this example, but at least we were able to work out part
of it.
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1.5 Completeness of the real line

In this course, we work with the real numbers, which are supposed to correspond to points on a number
line. Ultimately, all of the properties of real numbers derive from intuitive geometric properties of points
on a line. For example, the arithmetic operations of addition, subtraction, multiplication, and division can
be defined in terms of changes of position and scale on the number line. The order relation between real
numbers (< and >) also derives from relative position on a line. (You have to specify the numerical values
of at least two points, such as 0 and 1, in order to make a geometric line into a number line, but once you
have those two points, then everything else follows.)

The most advanced of the fundamental properties of the number line is its completeness. There are
many ways to express completeness, but my favourite is this:

If you pick out two nonempty regions of the number line, one on the left called L and one on the
right called U, which don't overlap but otherwise cannot be extended further, then there is a sin-
gle point between them, called cut (L, U), the cut between L and U.

L A U
cut (L,U)

We can make this logically precise (in terms of the order relation on real numbers): Suppose that L and U
are two sets of real numbers (making precise what regions of the number line are), with these properties:
e There is some r € L and some s € U (which is what it means for L and U to be nonempty);
e If r € L and s € U, then r < s (which is what it means for L to be on the left and U on the right
without overlapping);
o If r < s, then r € L or s € U (which is what it means to say that L and U cannot be extended fur-
ther).
(Note that ‘or’ in math, as here, normally includes the possibility of both.) Then there exists a real num-
ber cut (L, U) with this property:
e If re Land s € U, then r < cut (L,U) < s (which is what it means for cut (L,U) to be between L

and U).

A couple more important properties follow from what was said above:
e The number cut (L, U) is the only real number between L and U;
o Ifr <cut(L,U)<s, thenr e L and s e€U.

The point of all this is to be able to prove that a real number exists. For example, in order to prove
rigorously that every real number ¢ has a cube root /c (and has anybody ever showed you why this is
true or did you just take it on faith?), you first define L as {z | 23 < ¢} and U as {x | 2® > ¢}, check that
L and U have the necessary properties listed above (which takes a bit of work with algebra), conclude that
cut (L, U) exists with the properties listed above, and check (using those properties) that cut (L, U )3 =c
(which takes a lot more work with algebra). Thus, this cut is the cube root ¥/c.

This method of proving that a real number exists is also practical, because it shows us how to ap-
proximate its value as closely as we like. For example, to approximate Y2 to 4 decimal places, you look
at some nearby possibilities, such as 1.0001, 1.0002, 1.0003, . .., 1.9997,1.9998,1.9999. Somewhere in this
list are two numbers right next to each other, one of which has a cube less than 2 (so it's in L) and one
of which has a cube greater than 2 (so it's in U). Then we approximate ¥/2 to 4 decimal places by say-
ing that it's in between these two numbers. (As it happens, these two numbers are 1.2599 and 1.2600; al-
so, 1.259953 > 2. so Y2 rounds to 1.2599.) There are more efficient ways to calculate cube roots (such as
Newton's Method, described on page 24), but this proof that they exist at least gives one way to calculate
them, to start with.

I will only have to refer to this property of real numbers occasionally, when explaining why some num-
ber exists. The main point is that you know that a number exists if you can approximate it as closely as
you like, the way that I approximated Y2 to 4 decimal places. Checking all of the detailed requirements is
not usually really necessary to understand what's going on.
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2.1

2 Limits and continuity

There are four main operations considered in Calculus: limits, derivatives (or differentials), integrals (or
antidifferentials), and sums of infinite series. (The last of these is only covered in Calculus 2.) Here we will
look at the first one: limits. These are also closely related to the concept of continuity, which is actually
the easiest concept to define.

Continuity

In Calculus, we not only study variable quantities; we study quantities that are continuously varying. This
implies in particular that a quantity y that varies from 1 to 6 will pass through 1%, m, and 5.789, and ev-
erything else in between.

In real life, we can never measure or fix the value of a such a quantity y exactly, down to the last dec-
imal place; after all, there are infinitely many decimal places, but we can only do a finite amount of work.
So, it is key to the study of real numbers that we can approzimate them to any finite number of decimal
places (among other ways). That is what the stuff about cuts on page 6 accomplishes.

Also in Calculus, we study how one quantity y varies along with another quantity x. The most straight-
forward way in which this can happen is when y is a function of x; if f is the function, then y = f(x). But
in practice, we only know x and y approzimately, so if we only use an approximate value of x, then f(x)
should still be an approximate value of y. For example, suppose that f(z) = 22 for all z; if you know that
x is approximately 2, then you know that y = f(x) is approximately 22 = 4.

This doesn't work with every function! For example, suppose that g is the piecewise-defined function

(x)_{x—I—l for x < 2,
I =1z +3 for x > 2;

if you only know that z is approximately 2, then you really don't know if g(z) is approximately 2+ 1 =3
or approximately 2 + 3 = 5. Of course, if you know that x is ezactly 2, then you know that g(z) is 2+ 3 =
5 (exactly); but it's no good if you only know z approximately.

In these examples, we say that ¢ has a discontinuity at 2, while f is continuous at 2. (In fact, f is
continuous everywhere, while g is continuous everywhere except at 2.) So the idea is this:

A function f is continuous at a real number c if, whenever z ~ ¢ (meaning that z is approxi-
mately equal to ¢), f(z) = f(c).

So if you only know that = = ¢, then that's enough information to know f(x) approximately (specifically,
that f(z) ~ /(0)).

Actually, we should take care about where f is defined. Sometimes Calculus textbooks say that f has
a discontinuity at c if f is undefined at ¢ (that is if f(c) does not exist), and sometimes they don't; but in
any case, f is not continuous there: f must be defined first in order to be continuous. On the other hand,
if f is undefined at x, then we don't hold that against f; for example, we want to say that f(z) = /z is
continuous at 0, even though f(z) does not exist (as a real number) whenever x < 0. So a more careful
definition is this:

A function f is continuous at a real number c if f(c) exists and, whenever = ~ ¢ and f(z) ex-
ists, f(x) = f(c).

This is still not a completely rigorous definition, because it doesn't explain how close we need to be
to say that one quantity is approximately equal to another. (Basically, the answer is this: as close as you
need, and as close as you want.) But I will save that for a bit later. Already, this basic idea should be
enough to allow you to judge continuity of a function from its graph.

To judge continuity of a function from a formula, it's convenient to know that any function is continu-
ous (wherever it is defined) if it has a formula that uses only these operations: addition, subtraction, mul-
tiplication, division, absolute values, opposites, reciprocals, raising to powers when the exponent is con-
stant or the base is always positive, extracting roots when the index is constant or the radicand is always
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positive, logarithms, trigonometric functions, and inverse trigonometric functions. These are pretty much
all of the functions that you ever deal with!

So, the exceptions in practice are much rarer: exponentiation where the exponent varies and the base
can be zero or negative, roots where the index varies and the radicand can be zero or negative, and piecewise-
defined functions. Of these, only piecewise-defined functions are likely to come up. These functions can be
continuous, but only if the values agree on both sides whenever two pieces join. So for example, while

(w)_{x—i—l for x < 2,
I =z +3 for z > 2

has a discontinuity at x = 2,
h(z) = {erl for x < 2,
T 55—z forz>2

is continuous at x = 2 (and so everywhere), because 2 + 1 =5 — 2. The precise theorem is that, if f and ¢
are functions that are each continuous at a number ¢, and if f(c) = g(c), then the piecewise-defined func-
tion h defined by
[ f(x) forx <,
hiz) = {g(x) for x > ¢

(or by f(z) for z < c and g(z) for > ¢, because this gives the same result), then h is also continuous
at c.

Returning to the meaning of continuity, how close of an approximation is close enough? The key to
the answer is that a real number may be approximated as precisely as you wish, as long as you put enough
work into it. So for f to be continuous at ¢, we should be able to demand that f(z) and f(c) be as close
together as we like (as long as we still allow for a positive distance between them). But in order to achieve
that result, it's fair in turn to demand that = be as close to ¢ as necessary (again as long as we still allow
the distance to be positive). The distance between two numbers is given by subtracting and taking the
absolute value, so we need to be able to ensure that |f(x) — f(c)| is as small as we want (but positive) by
making |z — ¢| as small as we need (but positive).

The traditional symbols for these small but positive distances are the Greek letters ‘e’ (lowercase Ep-
silon) and ‘6’ (lowercase Delta). For this reason, this is sometimes called the e-§ (or epsilon-delta) defini-
tion; this general method of designing definitions and proving theorems is also called epsilontics. So here is
the rigorous definition:

A function f is continuous at a real number c if f(c) exists and, for each positive number € (no
matter how small), there is some positive number § (possibly quite small), such that whenever
|z — c| <& and f(z) exists, |f(z) — f(c)] <e.

This is fairly complicated, but you can view it as a game, involving a function f and a number ¢ such that
f(c) exists.

e [ challenge you with a positive number e.

e You respond with a positive number §.

e I reply with a value of x such that |z — ¢| < § and f(x) exists.

e You win if |f(z) — f(c)] < e.
If you can win this game, no matter what choices I make, then f is continuous at ¢. On the other hand, if
I can win no matter what choices you make, then f has a discontinuity at c.

To see how this matters in practice, suppose again that f(z) = 22 for all x and you're told that z ~ 2;

you want to judge how precisely you know that 2% ~ 4. To be specific, suppose that you want to be guar-
anteed that z® rounds to 4 to at least 3 digits after the decimal point, in other words that |22 — 4| < % X

1073, (That is, € is % x 1073 = 0.0005.) This means that you want 22 to be between 4 — % x 1073 = 3.9995

and 4 + % x 1072 = 4.0005. Taking square roots (and assuming that z is positive, since it's near 2), this
means that x is between 1/3.9995 ~ 1.999 87 and 1/4.0005 ~ 2.00012. To be really sure that this is true,

round up the lower number and round down the upper number: x should be between 1.9999 and 2.0001.
Subtracting these from 2, this means that |z — 2| < 0.0001. (That is, § is 0.0001; if the upper and lower
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estimates give you different values of §, then use the smaller one to be safe.) So if you can verify that x is
at least that close to 2, then you can be confident that 22 is at least as close to 4 as you need. (That f is
continuous at 2 means that no matter how precisely you need to know that 2 = 4, you'll be able to per-
form a calculation like this, at least in principle, to find out how precisely you need to require that = ~ 2.)

Here are a few more definitions to round out the topic; in all of these definitions, f is a function, c is
a number, and S is a set (of numbers).

e f is left-continuous at ¢ (or continuous at ¢ from the left or from below) if the function
(x — f(z) for x < ¢) (that is the same as f on the interval (—oo, ¢] but undefined on the interval
(c,00)) is continuous at c.

e f is right-continuous at ¢ (or continuous at ¢ from the right or from above) if the function
(x — f(x) for x > ¢) is continuous at c.

e f is continuous on S if f is continuous at ¢ whenever ¢ € S (so in particular, f must be defined
on S).

e f is just plain continuous if f is continuous on its domain (so continuous at every number where it
is defined).

Left and right continuity will not come up much, although sometimes it is useful to know that f is contin-
uous at ¢ if and only if it is both left-continuous and right-continuous there.

However, the other two definitions above will be used often. It will be especially common to say that
a function is continuous on a compact interval [a, b]; this means that we don't care whether it's defined at
numbers less than a or greater than b and (even if it is) whether it's continuous there, but we care about
what is happening between (and at) a and b. (Even at a and b, we usually only care that the function is
right-continuous at a and left-continuous at b, but it would take more work to be so precise, so we usually
don't bother to clarify this.)

Directions

A direction in some variable describes not only whether the variable is increasing or decreasing (that is
its literal direction on a number line) but also if there is a limiting value that it approaches but does not
reach. The basic directions that we study in this course take the following four forms, where x may be any
variable and ¢ may be any constant:

x — 00: as  increases without bound (or as = approaches positive infinity);

x — —oo: as © decreases without bound (or as x approaches negative infinity);

x — ¢ : as x increases towards ¢ (or as x approaches ¢ from the left, or from below);
x — ¢T: as x decreases towards ¢ (or as z approaches ¢ from the right, or from above).

Any two or more of these directions may be combined, but the only type of combined direction in the
textbook is this:

e r — ¢: as x approaches ¢ (from either direction, or even both at once, jumping back and forth);

which is the combination of z — ¢~ and = — ¢t. That said, other combinations are also sometimes stud-
ied, especially the combination of x — oo and * — —oo, which is written x — +o00: as x approaches pos-
itive or negative infinity. (You can also consider fancier directions, for example as = increases without
bound while taking only integer values, which is relevant to the material in Section 9.1 of the textbook and
which I will get to in Chapter 6. For now, however, I'll stick to combinations of the types of directions rel-
evant to Chapter 2.)

It's sometimes convenient to think of co and —oo as numbers like the real number ¢, only numbers of
an infinite magnitude. Similarly, it's sometimes convenient to think of ¢+ and ¢~ as numbers that are in-
finitely close to (but distinct from) the real number ¢. Then the meanings of the directions are as follows:

r — oo: what happens when z is positive and infinite?

x — —oo: what happens when z is negative and infinite?

x — ¢~ : what happens when z is infinitely close to but less than ¢?

2 — ¢t: what happens when z is infinitely close to but greater than c?
x — ¢: what happens when z is infinitely close to but distinct from ¢?
r — Fo0o0: what happens when the absolute value of x is infinite?
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2.3

This can be made rigorous, by extending the real number system to the hyperreal number system, al-
though I will not be doing that. But in any case, it can be useful for intuition.

Ultimately, the important thing about a direction is what happens eventually as you move in that
direction. So for example, as x — oo, it is eventually true that = > 0, that x > 1, that x > 2, and so on.
Besides that ... well, that's it, really. If any statement P is true as x — oo, then it's true because there
is some fixed number M (which you may assume is a whole number, although you don't have to do this)
such that P is true whenever 2 > M. For example, 22 > 4 as  — oo, because 22 > 4 whenever z > 2.
(It's also true that 2 > 4 whenever z < —2, but that's irrelevant.)

Similarly, P is true (eventually) as  — —oo if there is some number M such that P is true whenev-
er x < —M. Also, P is true in the combined direction z — Foo if it is true both as x — oo and as x —
—00, in other words if there is some number M such that P is true whenever |z| > M. Next, P is true as
x — ¢T if there is some positive number § (which you may assume is 1/M for some natural number M, al-
though you don't have to do this) such that P is true whenever ¢ < x < ¢+ §; and P is true as x — ¢ if
there is some positive number § such that P is true whenever ¢ —§ < x < ¢. Finally, P is true as * — ¢ if
it is true both as x — ¢t and as x — ¢, in other words if there is some positive number & such that P is
true whenever ¢ — § < x < ¢+ 9 but = # ¢ (or equivalently whenever 0 < |z — ¢| < §).

For example, x — 2 # 0 as x — 2, precisely because of the x # 2 bit; the point of x — 2 is that x is
close to 2 but still distinct from 2. You can't say that £ —2 > 0 as  — 2, but at least (x — 2)2 > 0; also,
z —2>0as x — 2. This sort of analysis allows you to simplify things as you work in particular direc-
tions.

Limits
If D is any direction and u is any variable quantity, then we indicate the value to which w approaches as
change occurs in the indicated direction as

lim u

D
in a diplayed equation or as limp u in running text. (The textbook likes to write u as f(z), and this is
certainly convenient when it comes to the formal definition, but in practice you'll start with an expression
involving the variable z, and it's not necessary to think of this as given by a function.) We will examine
the case when u approaches a real value L, as well as the case when u increases without bound or decreas-
es without bound. In the first case, we say that the limit converges; in the second case, we say that the
limit diverges to (positive or negative) infinity. Other types of behaviour are also possible, which are also
kinds of divergence, but I won't try to analyse those now.

A limit as x — ¢ is one of the three kinds of results that we are considering if and only if the limits as
z — ¢’ and as z — ¢~ are both this same result. So in total, there are fifteen kinds of limits that we will
consider, for the five kinds of directions (four basic and one combined) and the three kinds of results:

lim u = L; lim u = oc; lim u = —oc;
xr—r0o0 T—r00 Tr—r 00

lim v=1L; lim w=o00; lim u=—o0;
xr—r—00 Tr—r— 00 Tr—r—00

lim v =1L; lim u = oc; lim uw = —o0;
r—c— xr—c— r—c—

lim v =1L; lim v = oc; lim v = —o0;
z—ct r—ct z—ct

limu = L; lim u = oc; lim u = —o0.
xr—c Tr—c xr—rc

To see how to read these aloud, I'll consider the last one as an example; this says that the limit, as x ap-
proaches ¢, of u is negative infinity.
If you think of co and —oo as numbers of an infinite magnitude, then the meanings of the results are
as follows:
e limp u = oco: u is positive and infinite;
e limpu = —oo: u is negative and infinite;
e limpu = L: u is infinitely close to L (which includes being equal to L as a special case).
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2.4

This can be made into a rigorous definition of limits using the hyperreal number system, but I will only
use it for intuition.

There are some alternative notations for limits that are worth knowing. First of all, instead of writing
limp u, you can also write u|,, analogous to evaluation notation (page 5). That is, u[,__ means whatever
u equals when x equals c, while u|,_, . means whatever u approaches (or equals) when x approaches (but is
still distinct from) c.

The point of a continuous function is that these are the same; that is, f is continuous at ¢ if and only
if f(x)|,_. and f(z)|,_,. both exist and are equal. Of course, instead of writing f(z)| you could just
write f(c); similarly, instead of writing f(z)]

r=c’

+_se» there is yet another notation for this:

+ .
F(e*) = f(@)],.. = I f(2).
You can read this as ‘f of ¢ plus or minus’; the idea behind ‘plus or minus’ here is the same as in the En-
glish phrase ‘more or less’, meaning ‘approximately’, because we're looking at values of f near c rather
than at c. Then f is continuous at c if and only if f(c*) = f(c) (including that these both exist).

The analogous notations for the other types of directions are f(c™), f(¢), f(oo), and f(—o0). Since
things like ¢ and oo aren't real numbers, there should be no confusion between this function-limit no-
tation and the usual function-evaluation notation f(c). Since all of these alternative notations for limits
aren't in the textbook, I won't use them very much, but they are good to know; they are short and handy,
and you may see them elsewhere.

Defining limits

The simplest type of limit to define is lim,_,. f(z). Note that this just depends on the function f and the
real number ¢, which is especially clear using the notation f(c%) in the previous paragraph above. If f is
continuous at ¢, then this is supposed to be f(c). But what if f is undefined or discontinuous at ¢?

Given a real number L, let f., 1 be the piecewise-defined function given by

fc»—>L(l’) = {f(x) for z # ¢,

L for x = c.

That is, fer is almost the same function as f, except that f.r(c) = L, regardless of what f(c) is (or
even whether f(c) exists in the first place). Now here is the definition of the limit:

If there is a unique real number L such that f. 7 is continuous at ¢, then L is f(c%).

Note that the limit is undefined if either there is no L that makes f. . continuous or if there is more than
one L that makes it continuous. But that second possibility is very rare; it only happens if f is undefined
approaching ¢, that is if f is not defined anywhere near ¢ (in which case f.,; is continuous at ¢ no matter
what L is, because there is nothing nearby to compare to).

What if the limit is some kind of infinity? We can't talk about f. 0, because then f. o (c) would
have to be oo, which is not a real number. However, if f(z) is increasing without bound, then 1/ f(z)
should be approaching 0. This almost allows us to define when the limit is co; the only problem is that
1/f(x) still approaches 0 even if f(z) decreases without bound as well. Still we can say that

igf(x) = +o0 if i;rrt (ﬁ) =

To finish the definitions that we want, we need to specify the sign of f(x) as well:

lim f(z) = oo if lim (L) =0and f(z) >0asz — ¢

z—e z—c \ f(x)
lim f(z) = —oo if lim (L) =0and f(z)<0O0asz —c.
z—c z—c \ f(x)
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2.5

You an also define things like lim,_. v = L~ and lim,_,.« = LT by similar restrictions, but we won't be
doing that.

Finally, for the general defintion of limp u, where D is any direction and wu is any expression, sup-
pose (like I did back on the top of page 5) that x and u are both functions of some independent variable ¢,
where z is the variable that appears in the direction D. To be precise, suppose that v = f(¢) and = = g(¢).
If the direction D consists of some additional condition on the variable x, then assume that this condition
holds for every value of the function g. (So for  — ¢~, suppose that g(t) < ¢ always, and for z — ¢, sup-
pose that g(t) > ¢ always; even for x — ¢, still suppose that g(¢) # ¢ always.) Then if the limit of f(t) has
the same value (a real number L, oo, or —oo) whenever the limit of g(¢) is the value given by the direc-
tion D (a real number ¢, co, or —o0), then that value for the limit of w = f(t) is the limit limp w.

(This definition covers much more general cases than the textbook's; for example, lim,_,¢ (£z) = 0,
because whenever f(t) = +¢(t) and lim g(¢) = 0, then lim f(¢) = 0. Intuitively, this should be obvious,
since +x =~ 0 whenever = = 0, no matter whether it's +z or —z. But the textbook can't make sense of
this, technically, since +x is not a function of . The formal definition of the Riemann integral is anoth-
er case where the textbook technically cannot write it down but I can.)

The textbook defines limits directly using epsilontics (which is very similar to the epsilontic definition
of continuity but slightly more complicated), then defines continuity using limits; I have defined continuity
using epsilontics and defined limits using continuity. Our definitions come in different orders, but they are
equivalent (at least in the cases where the book gives a defintion at all). In any case, the most important
method of calculating limits is this:

If f is continuous at ¢, then lim f(x) = f(c).

T—cC

This fact makes most limits trivial to calculate; but it's the exceptions where all of the interesting stuff
happens!
For example, let g be the piecewise-defined function from page 7:

(x)_{x—i—l for x < 2,
I = e +3 for x > 2;

consider the limits of g(x) in various directions. Since g is continuous everywhere except at 2, it follows
that lim g(z) is simply g(c) for every real number ¢ other than 2. There are still a few interesting lim-
xr—c

its of g(z), however: the limits as z — 2%, as * — 27, as * — oo, and as  — —oo. The first of these is
g(2) = 5, basically because g(x) uses the same formula when x = 2 as when x > 2; formally, it's because
x + 3 for > 2 is continuous as a function of z. (In other words, g is right-continuous at 2.) The next
one, the limit as © — 27, is 3, even though ¢(2) # 3 (so g is not left-continuous at 2). But the reason for
this limit is essentially the same as the reason for the previous limit; it is that  + 1 for < 2 is continu-
ous as a function of z. Next, the limit as x — 0o is 00, because if x is positive as 1/ — 0, then = + 3 is
positive and 1/(z + 3) — 0, or going down to an even more basic level, because 1/(1/¢ + 3) simplifies to
t/(1 + 3t), which is continuous, positive when ¢ is positive, and 0 when ¢ is 0. Finally, the limit as @ —
—o00 is —o0, for essentially the same reason, but now using 1/(1/t + 1) and looking at negative values.
(This time, 1/(1/t 4+ 1) can be positive even when ¢ is negative, but not when ¢ is sufficiently close to 0,
which is what matters.)

The analysis in the previous paragraph is somewhat ad hoc, showing how you would work directly
from the definitions. The next section is about quick methods, but it will still be useful to think about
what happens in various directions.

Calculation techniques

Here I discuss the practical aspects of calculating limits.
The first fact to know about calculating limits is that the limit of the variable itself is already given
by the direction:

lim z=¢, lim x=¢, limz=¢, lim z=00, lim z= —o0.
r—c— r—ct T—cC T—00 T——00
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A similarly important principle is that the limit of a constant, in any direction, is that constant:

limC = C.
D

Of course, we rarely bother with limits as simple as these! However, we have the powerful principle that if
an expression is built using only the usual operations,* then the limit of the expression may be computed
using these operations.

Explicitly, each of these equations is true whenever the right-hand side is defined (so that in particu-
lar the left-hand side is automatically also defined), so long as n is constant and limp w is positive:

lim (u 4 v) = limu + lim v; lim (v — v) = limu — lim v;
D D D D D D

I
1i[r)n(uv) :hlljnu'lilr)nv; hlI)n(u/v) = 11221?7

lim (—u) = —lmu; i (Ju]) = |lmou;

D D D D

11[1)1’1 (logv U) = loglimD v <11E)Il u) 5

lim (V) = p/lim;

lim u
D

lim (sinu) = sin (lim u); lim (cos u) = cos (lim u);
D D D D
lim (tanu) = tan (lim u); lim (cot u) = cot (lim u);
D D D D
h})n (secu) = sec (h[r)n u); hgl (cscu) = csc (hg)n u);
lim (asin u) = asin (lim u); lim (acos u) = acos (lim u);
D D D D
lim (atanu) = atan (lim u); lim (acot u) = acot (Hm u);
D D D D

ligl (asecu) = asec ; lig)n (acscu) = acsc <lim u)
In this way, we can evaluate most limits.

We can do even more limits if we extend arithmetic to the values 0o as follows, where a is (in gener-
al) any real number or +oco:

a+o0o=00+a=o0if a > —oc;
a-00 =00 a=o00if a > 0;
—00-a=—(00-a);

o00? =00 if a > 0;

a® =o0ifa>1;

a” =0if |a|] > 1;

Voo =00 if 0 < a < oo

a—00=—-00+a=—00if a < oo;
a-00=00-a=—o0 if a < 0;
a+too=0if —oc0<a < oo;
(£o0)* =0 if a < 0;

a®=0if —1<a<l;
a®=0if0<a<1;
Ya=1if0<a< oo.

Rather than memorizing all of these, it is usually enough to think to yourself what happens if a given
number becomes arbitrarily large.

* Addition, subtraction, multiplication, division, absolute values, opposites, reciprocals, raising to pow-
ers when the exponent is constant or the base is always positive, extracting roots when the index is con-
stant or the base is always positive, logarithms, trigonometric operations, and inverse trigonometric opera-
tions, the same as the list of continuous operations spanning pages 6 and 7
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Finally, we can even divide by zero sometimes, if we are computing limits!

lim (u/v) = o0 if limwu > 0, limv =0, and v > 0;
D D D

lim (u/v) = —oo if limu > 0, limv =0, and v < 0;
D D D
lim (u/v) = —oo if limu < 0, limv = 0, and v > 0;
D D D

lim (u/v) = o0 if limu < 0, limv =0, and v < 0.
D D D

In other words, if v — 0 with a consistent sign, then the limit of u/v is plus or minus infinity, depending
on how the sign of v compares to the sign of u, as long as u approaches something other than 0.

However, this tells us nothing if © — 0 too; in other words, if you work out the limit as far as 0/0.
The same goes for expressions involving infinity such as co — oo, 0 - 0o, 0o + 00, 00?, and 1°°, none of which
is handled by the rules on page 13. Additionally, the rule for limp (w*) requires that limp w > 0; but even
if w > 0 in the direction D, it's still possible to have limp w = 0. In this case, it's best to look at 1/w
(whose limit is infinite) instead, but the form 0° cannot be treated in this way. These are all called in-
determinate forms.

To handle an indeterminate form, people typically use an advanced technique such as L'Hépital's Rule
(page 25) or expansion into power series (page 50). However, you can often manipulate the expression al-
gebraically to get something that works.

While I'm at it, here is another rule, called the Chain Rule for limits: If limp u is a real number and
f is continuous there, then

hlgnf(u) = f(hglu)

(Compare the Chain Rule for differentials in Section 3.3 below.) This is not something that you'll use di-
rectly if you have all of the rules on page 13, but you might need it in a more theoretical situation where
you don't know what function f is (but you still know that it's continuous).
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3.1

3 Differentiation

The single most important topic in Calculus is probably differentiation. Whereas limits tell us where a
quantity is going as it changes, differentiation tells us how quickly the quantity is changing. Technically,
the question answered by limits does come up more often, but it's also trivial to solve in the vast majority
of practical cases (when the variable is given by a continuous function); it may not seem that way while
you're doing the problems, but that's just because we're focussing on the exceptions. Differentiation, how-
ever, is rarely trivial. That said, it is also rarely difficult; you just need to learn the rules.

A word about notation: As I remarked earlier (on page 3), when y = f(z), we can write dy/dz =
f'(z); both sides of the latter equation are notation for a derivative, which is one of the things that dif-
ferentiation produces. The left-hand side means the derivative of y with respect to x, while f’ in the right-
hand side is a function which is the derivative of the original function f. To say that the derivative of f is
f' suggests that the derivative is a basic concept, not a combination of anything more complicated, and
that is how the textbook approaches derivatives. But the left-hand side suggests that a derivative is a
ratio, the result of dividing dy by dz, and this is how they were originally used. As for dy and dz them-
selves, they are the differentials of y and x; a differential is another thing that differentiation produces.

I will start with an intuitive description of differentials, then turn to derivatives for a precise defini-
tion, then back to differentials to tie it all together. (Then I'll bring up some applications and the like.)

Differences

I'll introduce differentials by starting with a related concept that can be done with pure Algebra. If a vari-
able quantity x changes from the value a to the value b, then the difference between these two values is
Az =b— a. (The triangle here is an uppercase Greek letter Delta, so Az is often read ‘Delta Ex’, but you
can also pronounce ‘A’ as ‘difference’ or ‘change in’.) More generally, as  changes from «a to b, some oth-
er quantity «u may change as well, although (usually) between different values. Whatever the difference in

those values is, that is the difference in u when z is a and Az is b — a, written Au| z=a, . Or to put it
r=b—a
another way, if x changes from a to a + ¢, then u will change between two values, and the difference be-

tween these is Au|z=a, .
r=c
Formally, every variable x in a problem gets a new variable Az (its difference) associated with it.
In principle, you can evaluate an expression with any value of x and any value of Az, but any relation-
ships between the variables will give rise to relationships between the variables' differences. To be specific,
suppose that every variable is a function of some independent variable ¢, as in the evaluation notation on
page 4. Then if x = g(t), we define
Azli=c, =g(c+h)—yg(c),
At=h
as long as g is defined at both ¢ and ¢+ h. (If it isn't, then Az is undefined for those values of ¢ and At.)
As with evaluation notation, you don't need to refer to ¢ directly; you can use the shortcut that
r=c+h u|

r=c’

Au|e=c, = ul
Axz=h
if these are defined. For example,

A+ ) amt, = (204 3)],_sn — 22+ 3),_y = (24 +2) +3) - (2(4) +3) = 4.

Azx=2

In other words, as = varies from 4 to 4 + 2 = 6, u = 2x + 3 varies from 11 to 15, and the difference be-
tween these is 4.
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3.2

3.3

3.4

Differentials

The idea behind a differential is that it is an infinitely small difference. There are various ways to make
this idea logically precise, but we will not go into that in this applied course. (I will return to this at the
end of the course, if there is time.) In place of the uppercase Greek letter ‘A’ for a standard-sized (finites-
imal) change, we use the lowercase Latin letter ‘d’ for an infinitely small (infinitesimal) change. So if u
varies smoothly, then du is the differential of u, which more or less means A%y when b — a is infinitely
small (but not quite zero).

Although this is usually not an issue in applied situations, it's important that u be a smoothly varying
quantity, also called a smooth variable. Exactly what this means is, again, something that can be made
precise. But for now, you can think of it as meaning that, whenever the underlying varying reality chang-
es by a small amount, the variable quantity u also changes by a small amount, at a definite rate, with no
sudden jumps or infinitely fast change.

Differences and differentials of linear expressions

The following rules hold exactly for differences:
e Ak =0 if k is constant;
o A(u+v) =Au+ Av;
o A(ku) = k Au if k is constant.
These equations hold for finitesimal changes, so they also hold for infinitesimal changes:
o dk =0 if k is constant (the Constant Rule);
e d(u+v) = du+ dv (the Sum Rule);
e d(ku) = kdu if k is constant (the Multiple Rule).
This allows us to calculate differentials of linear expressions.
For example:

d(7z) = 7dz;
d(—bx) = —5dux;

d(z +2) =dzx +d(2) =dz + 0 = dux;
dly — 4) = dy + d(—4) = dy + 0 = dy;
d(2t+3) =d(2t) +d(3) =2dt + 0 = 2d¢;
d(7—z)=d(-1lz+7) = -1dz+ 0 = —dz;
d(2z + 3y) = d(2z) + d(3y) = 2dz + 3dy;

etc.

Derivatives of functions

Given any function f and a number ¢ in the domain of f, the difference quotient of f at c is a func-

tion f., given by

Note that fc is not defined at 0. (In general, it's defined at any value h such that h # 0 and f is defined at
¢+ h.) The derivative of f at c¢ is the limit of f. approaching 0:

£(¢) = lim fu(h) = 1im LEFM = (0

h—0 h—0 h

(When this exists, we say that f is differentiable at c.) This is the definition in the textbook (see page 116),
except that the book doesn't bother to give a name to f..
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Because limits are closely related to continuity, it's possible to give a definition of the derivative based
on continuity. First, extend the definition of f. like this:

{w for h # 0,

f'(e) for h = 0.

If there exists a unique number f’(c) that makes this function continuous at 0, then that number is the
derivative of f at c¢; if there isn't, then this derivative doesn't exist and f is not differentiable at c¢. As it
is, this is just the usual definition stated with different terminology. Now I'll do a little algebra on fcz if
h # 0 and f is defined at ¢+ h, then

Fulh) = W’
h fe(h) = f(c+h) = f(c),
thC(h) +f(C) = f(0+h),

fle+h) = flc)+ fe(h) B

if h = 0, then this equation is still true as long as fc is defined at 0, since then it just says that f(c) =
f(c). So another way to define the derivative is to say that f is differentiable at c if there exists a function
feo that is continuous at 0 and satisfies the last equation above (for all h such that f is defined at ¢+ h),
and then f’(¢) = f.(0). One reason that this is useful is that having the entire function f. can help with
proving theorems about derivatives; see the next section.

Theorems about derivatives

Every operation has a corresponding rule for derivatives. To begin with, recall that if f and g are func-
tions, then f + ¢ is another function, which is defined wherever both f and g are defined, and whose val-
ues are given by (f + g)(z) = f(x) 4+ g(z). We similarly have f — g, fg and f/g (but the last of these is
undefined wherever the value of g is zero, even if f and g are both defined there).
The theorems about their derivatives are as follows:

e The Sum Rule: (f+9) = f +¢/,

e The Difference Rule: (f —g) = f' — ¢/,

e The Product Rule: (fg)' = f'g + fg',

f'g—19

e The Quotient Rule: (f/ g)/ = =——————. These are equations about functions; you can also put an
argument into them: J
(f +9)(2) = () + ¢/ (),
(f —9)(x) = f'(z) — g (2),
(f9)'(x) = f'(x)g(x) + f(2)g (x);

A general strategy to prove these is to apply the equation for f(c+ h). For example, to prove that
fg is differentiable wherever f and g are, with (fg)' = f'g + f¢', I'll use f. and g, along with the limit
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definition of (fg)'":

(fo)e+h) = (fo)(e) _ . Jle+h)gle+h) = f(c)glc)

(f9)'(c) = lim

h—0 h h—0 h
. (F(e)+ Felh) 1) (9(e) + Ge(h) B) = f(c) g(c)
a0 h
i £ 900 + £ 3l At Foh) hg(e) + Foh) he(h) b — F(e) g(c)
h—0 h
iy 20O+ O8I+ TG _ iy (7 1) o)+ 5(0) () + ol 3l )
= [(0) g(c) + £(c) Ge(0) + fe(0) e(0) 0 = f'(¢) g(c) + f(c) g'(c) + f'(c) ¢'(€) 0
= f'(c) g(e) + fle) ' (c).

(To evaluate the limit near the end, I need fc and g. to be continuous at 0.) I used smaller steps than the
textbook does on page 133 (which is the only reason that my proof is longer), and I think that it's a little
more straightforward, without the part where you add and subtract something without knowing yet why it
will help.

The derivative of a constant function is the constant zero function; that is, if f(z) = K for all x, where
K is some constant, then

’ o f(l‘—Fh)—f(QS)_ K-K . 9_. _
o= TR T e

This fact may be called the Constant Rule. Using this, a special case of the Product Rule is the Multiple
Rule:
!
(kf) (z) = kf'(z)

if k is a constant. Another useful rule is the Power Rule: If f(x) = 2" for all =, where n is a constant,
then
f'(x) = na" 1t

(For integer values of n, this may be proved by repeated application of the Product and Quotient Rules,
and there is a more complicated argument that applies to other rational values of n; however, a complete
proof is easiest after considering exponents and logarithms.)

Using these rules, you can differentiate any polynomial function, or more generally any rational func-
tion. For a polynomial, you differentiate term by term (allowed by the Sum Rule), ignoring any constant
terms (by the Constant Rule). For each term, you apply the Multiple Rule (to leave any coefficients alone)
and the Power Rule (to bring down the exponent as a coefficient and subtract one from that exponent).
For example, if f(x) = 32* — 52 + 22 — 12, then f/(x) = 3(4x*~1) — 5(22%71) + 2(1z1 1) + 0 = 1223 —
10z 4 2. For rational functions, you must also apply the Quotient Rule. There are examples in Section 3.3
of the textbook and in my video online.

The Chain Rule

One more rule, very important for theoretical purposes, is the Chain Rule. Using this, I'll be able to jus-

tify a new notation for derivatives and an even faster way to calculate them, so in the end you won't need

to refer to the Chain Rule explicitly. However, we need it first to ensure that the new technique will work!
Here is the Chain Rule in function notation:
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If ¢ is differentiable at ¢ and f is differentiable at g(c), then f o g is differentiable at ¢ and
(fo9)(e)=f(9(c)) g'(0)

Here, f o g is the composite of f after g, defined by (f o g)(x) = f(g(x))
I'll prove this using g. and fg(c):

o Je@ 3 h) = 5(9(@)) L £(900) + Fote) (3e(0) B) Gelk) h = [ (9(c)
=00 h o h

Fo (Ge(m) B) Gel) b
= }lbll% ( )(g h ) g = }IL% (fg(c) (gc(h) h) gc(h>)

= fg(c) (gc(o) 0) gc(o) = fg(c) (gl(c) 0) g’(c) = fg(c)(o) g/(c)
= f'(9(0)) 9'(0)-

This proof is as straightforward as something so abstract can be, and it can be done immediately and
rigorously without postponing things as the textbook does. I have the definition of derivative using fc to
thank for this; this definition of derivative will be handy for some other proofs later on, such as for the
Mean Value Theorem.

One immediately useful consequence of the Chain Rule is a generalized form of the Power Rule (what
the textbook calls the Power Chain Rule): If ¢ is differentiable at ¢ and n is a constant, then g™ is also
differentiable at ¢ (where (¢™)(z) is defined as g(z)"), and (¢")'(¢) = ng(c)" '¢'(c). The reason is that g"
is a composite f o g where f is the power function given by f(z) = a™.

Differentials

Many calculations in calculus are easier to do using differentials. Furthermore, differentials and the related
differential forms are often used in applications, especially (but not only) to physics. The official textbook
covers differentials (in Section 3.11), but incompletely and only in one minor application. It then uses dif-
ferentials again later (mostly in material for Calculus 2 and 3), but they are useful much earlier. So I will
make heavy use of them.

If x is a variable quantity, then dz is the differential of x. You can think of dx as indicating an in-
finitely small (infinitesimal) change in the value of z, or (better) the amount by which z changes when an
infinitesimal change is made (an infinitely small change in the value of the independent variable ). A pre-
cise definition is in the next section, but you will not be tested directly on that; what you need to know is
how to use differentials.

Note that dz is not d times z, and dx is also not exactly a function of x. Rather, = (being a variable
quantity) should itself be a function of some other quantity ¢, and dz is also a function of a sort; so d is an
operator: something that turns one function into another function. However, an expression like udx does
involve multiplication: it is u times the differential of x.

We often divide one differential by another; for example, dy/dx is the result of dividing the differen-
tial of y by the differential of x. The textbook introduces this notation early to stand for the derivative
of y with respect to x, and indeed it is that; but what the book doesn't tell you is that dy/dx literally
is dy divided by dz. Unfortunately, d?y/daz?, the second derivative of y with respect to z, is not literally
d2y = d(dy) divided by dz? = (dz)?; for this reason, I prefer the notation (d/dz)’y, meaning (d/dz)(d/dz)y =
(d/dz)(dy/dx) = d(dy/dz)/dz for the second derivative.

The most important fact about differentials is this: If f is a differentiable function, then

A(f(w)) = f'(u) du.
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That is, the differential of f(u) equals f’(u) times the differential of u, where f’ is the derivative of the
function f. This fact not only shows the relationship between differentials and derivatives, but also (be-
cause u could be any quantity) it encapsulates the Chain Rule in differential form. The Chain Rule is an
important principle in calculus, which is often difficult to learn how to use; but with differentials it is easy.

For example, suppose that you have discovered (say from the definition as a limit) that the derivative
of f(x) = 2% is f'(x) = 2x. Then this fact can be expressed in differential form:

d(2?) = 2z da. (*)

Conversely, if (by performing a calculation with differentials) you discover the equation (*) above, then
you know the derivative of f as well:

Whichever of these facts you discover first, once you know them, you know something even more general:
d(u?) = 2udu.

(The power to derive this from equation (*) is the Chain Rule.) The value of this is that « can be any ex-
pression whatsoever; for example, if u = x2 again, then

d(z?) = d((2*)*) = 2(2?) d(2?) = 22° (22 dz) = 42® dz.
So now you have learnt a new derivative, without having to calculate it from scratch.

Every theorem about derivatives of functions may also be expressed as a theorem about differentials.
Here are the most common rules:

e The Constant Rule: d(K) =0 if K is constant.
e The Sum Rule: d(u + v) = du + dv.
e The Translate Rule: d(u + C) = du if C is constant.
e The Difference Rule: d(u —v) = du — dw.
e The Product Rule: d(uv) =vdu+ udwv.
e The Multiple Rule: d(ku) = kdu if k is constant.
e The Quotient Rule: d<g) = M
v v
e The Power Rule: d(u™) = nu™ ' du if n is constant.

e The Root Rule: d( Vu) = Vu

if m is constant.

udu
mu
Of these, only the Constant Rule, the Sum Rule, the Product Rule, and the Power Rule are absolutely
necessary, since every other expression built out of the operations in the rules above can be built out of
the operations in these four rules. However, it is often handy to use all of these rules; it is up to you how
many of these rules to learn. (The Power Rule given here really corresponds to the Generalized Power
Rule in the textbook, because it incorporates the Chain Rule within it. The Root Rule is not in the text-
book, because a root can be algebraically transformed into a power; but the version here rationalizes the
denominator, which can be convenient.)

In addition, every time that you learn the derivative of a new function, you learn a new rule for dif-

ferentials, by applying the Chain Rule to that function. I already showed you an example of this on page

16: applying the Chain Rule to the function f(x) = 22 gives the special case of the Power Rule for n = 2.
Here are a few other functions whose derivatives you will learn, expressed as rules for differentials:
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e d(expu) = expudu.
d(Inw) = du
e d(sinu) = cosudu.
d(
(

e d(cosu) = —sinudu.
e d(atanu) = PR
And more! (To be clear, expu means e, Inu = log, u, u is in radians in sinu and cosu, and atan u is
what is also written arctanu, Tan™' u, or tan~! u and gives a result in radians.)

Notice that every one of these rules turns the differential on the left into a sum of terms (possibly on-
ly one term, or none in the case of the Constant Rule), each of which is an ordinary expression multiplied
by a differential (or something algebraically equivalent to this). An expression like this is called a differ-
ential form (although actually there are more general sorts of differential forms). If, when you are cal-
culating the differential of an expression, your result at any stage is not like this, then you have made a
mistake!

Defining differentials

To formally define what differentials are and prove their properties, I'll make the same assumption that I
made at the beginning of these notes, that there is an independent variable ¢ that every other variable is

a function of. Then, I said that if u = f(t), then u|,_, = f(c). Now I'll say that, if v = f(¢) and the func-
tion f is differentiable, then

More generally, if w = f(t) and v = g(t), then

Again, this is abstract, but the concrete application is straightforward; for example:

(2vdz +3da)|s=s, = 2(4)(0.05) + 3(0.05) = 0.55,
dz=0.05

2z dx + 3y dy)| p=a,y=5, =2(4)(0.05) + 3(5)(0.02) = 0.7.
dx=0.05,dy=0.02

(I've put small numbers in for dz and dy, because this is most often what comes up in practice, although
for theoretical purposes it doesn't matter.) It's now more common to be given only partial information;

for example:
(2zdx +3dx)|,_, = 2(4)dz + 3dx = 11 dx,

(2x dz + 3y dy)|e=4, = 2(4)dx + 3(5)dy = 8dx + 15dy.
y=>5

Notice that you don't plug in the values of 2 and y inside the differential operator d; if you're not given
values of dx and dy, then those differentials must remain in the answer.

While expressions like the above come up occasionally (see the discussion of linear approximation
on pages 21 and 22), the main purpose of a precise definition is to prove theorems. (That's how we can
be sure that the rules of Calculus will always work, at least when the definitions that prove them can be
made to apply.) Earlier I gave a list of rules for differentials; we can prove these using the precise defini-
tion of differential and the known rules for derivatives of functions. For example, if u = f(¢) and v = g(t),
then uwv = f(t) g(t) = (fg)(t). Therefore,

A(wo)| e, = (f9)'(€)h = (£/(€)9(e) + £()9/(€)) h = 9(0) f'(e) b+ F(€) g () = (velu -+ udv)

c,

t=
dt=h

Here, I've used the formal definition of differential along with the Product Rule for derivatives of func-
tions. The conclusion is that d(uv) and vdu + udv always evaluate to the same result, so

d(uv) = vdu + udv,
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which is the Product Rule for differentials. In the same way, all of the rules for differentials follow from
rules for derivatives of functions.

The Chain Rule is an important special case, so I'll prove it too. If u = ¢g(¢) and f is any function,
then f(u) = f(g(t)) = (f o g)(¢), so if f is differentiable, then

dwwwhm,=d«fomuwhih=Uwgﬂdh=f(md)y@h=(WWMMMhQ.

dt=h dt=h
Again, I used the definition of differential and the Chain Rule for functions, and my conclusion is the Chain
Rule for differentials:

d(f(w)) = f'(w) du

whenever f is a differentiable function.

It's not really essential to assume that there exists a single independent variable that every other vari-
able is a function of, and we'll stop making that assumption in Calculus 3 (if you stick around that long).
Then the formal definition will become a little trickier, but all of the rules for differentials will continue to
apply exactly as I stated them above.

Using differentials

The main technique for using differentials is simply to take the differential of both sides of an equation.
However, you may only do this to an equation that holds generally, but not to an equation that holds only
for particular values of the variables. (Ultimately, this is because d is an operator, not a function, so it
must be applied to entire functions, not only to particular values of those functions.)
The simplest case is an equation such as y = exp (z2), when we want the derivative of y with respect
to x. So:
y = exp (z°);
dy = d(exp (2?)) = exp () d(2?) = exp (2?) - 2z dz = 2z exp (2?) d;
d

é = 2z exp (2?).

Now we have the derivative. If we want the second derivative, then we do this again:

dy/dx = 2z exp (z?);
d(dy/dz) = d(233 exp (m2)> = exp (2?) d(2z) + 2xd(exp (xz))
=exp (22) - 2dz + 22 - 2z exp (2%) do = (2exp (2?) + 4a? exp (2?)) du;
_ d(dy/dz)

(d/dz)?y = 4 2exp (22) + 422 exp (z?).

Now we have the second derivative (also written d?y/dz?).

The previous example began with an equation solved for y. But we don't need this; suppose instead
that we have y° + 22 = 2% 4+ y (which cannot be solved for either variable using the usual algebraic oper-
ations of addition, subtraction, multiplication, division, powers, and roots). Undaunted, we forge ahead
anyway:

Y +a? =2 +y;
d(y® +a%) = d(z’ +y);
d(y°) +d(2?) = d(2°) + dy;
5y5 1 dy 4+ 22° 1 dz = 5251 da + dy;
5yt dy — dy = bat do — 22 da;
(5y* — 1) dy = (52* — 2z) dz;
dy S5zt — 2z
de  5yt—1"
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This process is called implicit differentiation.
The second derivative is a little more straightforward at first (or it would be if we didn't have to use
the Quotient Rule), but there is a twist at the end:

5zt — 2x
dy/dz = W;
d(dy/dz) = d<5$4 - 2x) _ (5y* —1)d(52* — 22) — (5z* — 2z) d(5y* — 1)
byt —1 (5y* —1)°
~ (5y* —1)(202® — 2) da — (52 — 22)(20y%) dy
- (5y* - 1)°
_ 20x3 — 2 dor — 20y3(5a* — 2z) |
Syt —1 (5y* —1)° ’
(d/d)?y = d(dy/dz) _ 2023 — 2 3 20y3 (5t — 2z) dy
dx S5yt —1 Gyt —1)° dx
2023 — 2 20y3(5x* — 22) Hat — 2z
Tyl (sytio1)? Byt

(which could be simplified further). Notice that I substitute the known expression for dy/dx in the last
step.

Another handy application of differentials is the case where both quantities z and y may be expressed
as functions of some other quantity ¢t. (For the purposes of formal definitions, we always assume that this
is possible, but now we're really going to use it.) If we start with the same equation as above, then this
will give us an equation relating the derivatives with respect to t:

v +a’ =2ty
d(y® +2%) = d(@” +y);
d(y°) +d(2?) = d(2°) + dy;
5y5~dy + 222 1 da = 5251 dx + dy;
dy dz dz dy

a8y o 9T alT Ay
WauTEE T w T

If we have information about one or both of these derivatives, then this equation will often give us useful
information to solve a problem. This situation is called related rates, since derivatives can be viewed as
rates of change (especially derivatives with respect to time ¢, although the ¢ in the equation above doesn't
have to stand for time).

When we get to integrals, differentials become so useful that even the textbook starts using them, but
I'll save that for later.

3.10 Derivatives with respect to time

Derivatives with respect to time are a major application of Calculus. Here are some examples:

Quantity: Derivative (with respect to time): Second derivative: Third derivative:
Position Velocity Acceleration Jerk

Velocity Acceleration Jerk

Speed Colloquial acceleration

Acceleration  Jerk

Net wealth Net income

National debt National deficit
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Position tells you where something is, while velocity tells you how it is moving, that is how its po-
sition is changing with time. Velocity is not quite the same thing as speed, since velocity keeps track of
direction as well. (In this class, most problems involving motion will take place in only one dimension, so
there are two directions, represented by positive and negative velocity, while speed is the absolute value of
velocity.)

The derivative of velocity with respect to time, in other words the second derivative of position with
respect to time, is acceleration in the technical sense of this term. On the other hand, the derivative of
speed is colloquial acceleration, which reflects how the term is used in everyday life. Colloquially, we
say that an object is accelerating if its speed increases with time (in other words if it is speeding up) and
decelerating if its speed decreases (in other words if it is slowing down). But in the technical sense of the
term, if an object is moving in the negative direction and slows down, then its velocity is becoming less
negative and more positive, and so its acceleration is positive, even though its colloquial acceleration is
negative. (For motion in more than one dimension, its even possible for the colloquial acceleration to be
zero even while the technical acceleration is far from zero; this happens when changing direction while
travelling at a constant speed.)

The time derivative of acceleration (in the technical sense) is jerk; that makes jerk the second deriva-
tive of velocity and the third derivative of position. Whereas position and velocity can't be directly felt,
you feel acceleration as a pressure or absence thereof (a sense of falling or being held or pushed), and a
sudden change in that acceleration is a jerk or yank. In engineering, acceleration must be controlled be-
cause it can destroy objects by crushing; jerk must be controlled because it can destroy objects by break-
ing them apart. Even higher derivatives of position are sometimes also studied, although the terminology
varies.

Turning to finances, your net wealth is the total value of all assets that you own minus the value of
all of your debts. (If you owe more than you own, then your net wealth is negative.) This is measured in
units of money, such as dollars. Your net income, on the other hand, is the total value of everything that
you receive (as wages, gifts, and so forth) in a period of time minus the value of your expenses. This is
measured in units of money per unit of time, such as dollars per year. In finance, the default unit of time
is a year, so you'll often say that someone's income is so many dollars, but this really means so many dol-
lars per year. Unlike physical motion, money goes in and comes out in discrete chunks, so the continuous
ideas of Calculus are only an approximation, but they can be a good approximation for some purposes.

Turning from personal finances to national, a country's government usually has some debt, called
the country's national debt, and if the government spends more than it receives from taxes and oth-
er revenue, then the difference is the national deficit. The debt is the total amount of money owed by
the government, while the deficit is the additional amount that has to be borrowed in a given period of
time. Again, deficit should really be measured in units of money per unit of time; so if someone says the
the U.S. national deficit is nearly 500 billion dollars, this really means 500 billion dollars per year. This is
the same as 5000 billion dollars (or 5 trillion dollars) per decade (since a decade is 10 years). On the other
hand, when they say that the U.S. national debt is nearly 20 trillion dollars, then they are saying exactly
what they mean; this is the net result of all of the deficits (and occasional surpluses, which are negative
deficits) in the past.

In 2010, there was a widely cited economics paper (Reinhart & Rogoff) that argued that a country
tended towards economic disaster as its government's debt approached its GDP (gross domestic product,

a measure of a country's overall income). In 2013, a review (Herndon, Ash, & Pollin) found statistical er-
rors that undemined the paper's conclusions, and this made the mainstream news media for a while. This
should have just been the normal process of science: a flawed idea being corrected. But it was big news
because Reinhart & Rogoff had struck an intuitive chord; it made sense that of course your debt should
always be well below your ability to pay it off. But in fact that only sounds reasonable if you ignore the
units! Reinhart & Rogoff's conclusion was really that a country was courting disaster if its government's
debt was close to its GDP times one year; otherwise, the units of measurement don't make sense. The idea
that a country should have enough income to pay off its government's debt becomes the idea that a coun-
try should have enough income to pay off its government's debt in one year (if all income were devoted to
this purpose), and there's no intuitive reason why that should be necessary to avoid economic ruin. (It is
still true that a country's economy tends to be better off when its government debt divided by its GDP is
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lower than otherwise, and it's conceivable that there could be some reason that there's something special
about when that quotient is close to one year; but there isn't.)
Linear approximation

Recall from page 13 above that if f is differentiable at ¢, then

fle+h)=f(e)+ fe(R) h

for some function fc that's continuous at 0 (and then fs(()) is f'(c)). Since f, is continuous at 0, we can
say that f.(h) = f.(0) when h = 0, or in other words, f.(h) ~ f’(c) when h ~ 0. Putting this approxima-
tion in the equation above, we get

fle+h)~ fe) + f'(e) h
when h ~ 0. Writing z for ¢+ h (so that h = & — ¢), you can also put this as

fl@) = f(e) + f'(c) (x —c)

when = ~ ¢. While the left-hand side could be any differentiable function, the right-hand side is a linear
function of x; this function is the linear approximation to f near ¢, or the linearization of f near c.

The textbook likes to name this function L; so f(x) ~ L(z) = f(¢) + f'(¢) (x — ¢). T don't like that
name, because which function you get as the linear approximation depends on which function you start
with as well as on which number ¢ you look at. So I write Ly . for the linearization of f near c:

f(@) = Lyo(x) = f(e) + f'(c) (z = ).

This is actually only the beginning of a whole sequence of approximations, each (typically) better
than the one before it:

f(z) = f(c), a constant, if f is continuous at ¢;
f(x) =~ f(c) + f'(c) (x — ¢), a linear function of z, if f is differentiable at c;

flx) = f(e)+ f'(c) (x—c) + %f”(c) (z — ¢)?, a quadratic function of z, if f is twice differentiable at c;

Q

flx)~ f(e)+ f'(c) (x—c)+ % F() (x— ) + éf’”(c) (z — ¢)*, a cubic function of z,

if f is 3-times differentiable at c;

(This sequence of approximations is covered in Calculus 2; see Section 9.8 of the textbook and page 45 of
these notes.)

It's handy to describe linear approximation in terms of differentials and differences. While a differen-
tial represents an infinitesimal (infinitely small) change, a difference represents an appreciable or finites-
imal (meaning not infinitely small) change. As x changes from ¢ to ¢ + h, we say that the difference in x
is

Ax=(c+h)—c=h.
Meanwhile, if y = f(z), then the difference in y is

Ay =Yloern = Yl = fle+ h) = f(o).

To be specific, we can write
Aylz=e, = fle+h) = f(o).
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Then the linear approximation says that
Ayle=e, = fle+h) = fle) = f(c) + f'() h = f(¢) = f'(c) h = dy|a=c, .
x=h dz=h
So in the end, the linear approximation replaces differences with differentials. Although
Avlgge, ~ dulsze,
is the proper way to put it, often one abbreviates this as
Ay =~ dy.

(But really this only correct if we also have Az = dz, or at least Az ~ dz, because that difference is also
replaced by a differential in the approximation.)

More generally, you can say that an equation involving differentials can be replaced by an approxi-
mate equation involving differences. For example, if 2° + 22 = 4® + v, then 5z* dz 4+ 2dz = 5y* dy + dy
(by differentiating both sides), so 5z* Az + 2 Az ~ 5y* Ay + Ay. Then if you are looking near the only
obvious solution, (z,y) = (0,0), and you want to know the value of y when z = 0.3 (so Az = 0.3 — 0= 0.3,
you find 5(0)4(0.3) +2(0.3) ~ 5(0)4 Ay + Ay, so Ay ~ 0.6; in other words, the new y-value is approximate-
ly 0+ 0.6 = 0.6. (The actual solution to (0.3)" 4 2(0.3) = 45 + y is Y|.—o.3 ~ 0.55 to 2 decimal places, but
I couldn't do that by hand!)

It can be important to know how far off an approximation might be, and this is basically given by
the next term in the sequence of approximations on the top of the page. To be specific, the Mean-Value
Theorem (see pages 23 and 24) says that f(z) — f(c¢) (which is the error in the constant approximation
f(z) = f(c)) cannot be any larger in absolute value than |z — ¢| times the maximum value that f’ takes
between  and ¢; similarly, f(z) — Ly .(z) (which is the error in the linear approximation near ¢) cannot
be any larger in absolute value than |z — ¢|* times half the maximum value that f” takes between z and c.
However, the details of why this is so are best saved for the full treatment of the entire sequence of ap-
proximations that begins on page 45 of these notes.

Newton's Method

If you want to solve an equation f(x) = 0, then the Intermediate Value Theorem may give you a way to
approximate the solution, but it is usually very inefficient. The Newton-Raphson Method (or simply New-
ton's Method) is usually much faster, although it doesn't always work. Here, you start with a guess z,
then replace it with a (hopefully) better guess x1, and so on. These guesses are computed in turn as fol-

lows:
o=t FE2y
T = T1 + f,((?l)),
=t o

With any luck, none of these guesses will give f'(z) = 0 (which makes the next guess undefined) but even-
tually one will give f(x) = 0 to as close an approximation as one wants.

The Newton—-Raphson Method is guaranteed to work under certain conditions given by the Newton—
Kantorovich Theorem: If f is differentiable at a, f(a) and f’(a) are nonzero, f is twice differentiable strict-
ly between a and a — 2f(a)/f'(a), and

@) < S

whenever z is strictly between a and a — 2f(a)/f’(a), then Newton's Method will give a sequence of values
that are strictly between a and a — 2f(a)/f’(a), and that converge to a solution of f(x) = 0 in the sense
that the limit lim,,_, o, ,, exists and f(lim, o z,) = 0.
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3.13 Advanced theorems

There are various theorems about derivatives and differentials that should seem obvious if you understand
the basic idea, but mathematicians have still proved them just to be safe.

For example, the derivative of a function is supposed to tell us how much the output is changing rel-
ative to the input. In particular, if the derivative is positive, then the output should increase when the
input increases and decrease when the input decreases; conversely, if the derivative is negative, then the
output should decrease when the input increases and decrease when the input increases. The first kind of
function is called increasing and the other is decreasing; there are precise theorems that a function whose
derivative somewhere is positive or negative must be increasing or decreasing (repsectively) near there.
Conversely, if a function has a local extremum, then the derivative must be either zero or undefined there.
This fact is key to optimization (see page 25 and following).

Another group of theorems are the mean-value theorems. The point of a derivative is that it can be
approximated by a difference quotient; the mean-value theorems reverse this, and show how a difference
quotient must (under some conditions) be equal to a derivative somewhere nearby. All of these theorems
consider a function f defined on at least an interval [a, b] (with a < b) such that f is continuous on all of
[a,b] and differentiable at least between a and b (but possibly not at a or b themselves).

Specifically, Rolle's mean-value theorem says

If f(b) — f(a) =0, then f'(c¢) = 0 for some ¢ between a and b.

Then Lagrange's mean-value theorem says

f(b) — f(a)
b—a

Finally, Cauchy's mean-value theorem says

In any case, f'(c) = for some ¢ between a and b.

If g is another function satisfying the same conditions as f and if furthermore ¢’ is never zero
fe) _ fb) - f(a)
g'(c)  g(b) —g(a)
In Cauchy's mean-value theorem, I like to think of f(x) as u and g(z) as v, so that the left-hand side is
du/dv (evaluated at x = ¢) while the right-hand side is Au/Av (evaluated at x = a and Az = b — a). La-
grange's theorem is the special case of Cauchy's theorem where g(x) is always simply z, and Rolle's theo-
rem is the special case of Lagrange's theorem where f(b) — f(a) = 0.

between a and b, then for some ¢ between a and b.

3.14 L'Hopital’s Rule

One important consequence of Cauchy's mean-value theorem is L'Ho6pital's Rule. This is a rule for lim-
its again, but it handles limits with forms such as oo + co and 0 =+ 0.
L'Hopital's Rule applies when taking limits in any direction D, if v and v are two quantities defined
in the direction D, so long as either limp (1/v) =0 (so limp v = 0o in other words) or both limp v and limp v
are zero. In that case, if limp (du/dv) exists, then limp (u/v) also exists and the two limits are equal.
L'Hépital's Rule can also be applied to limits with exponents by taking logarithms, applying the rule
directly, and reversing the logarithms. It is therefore very versatile, although Taylor series (see page 49)
can do even more.

3.15 Concavity

There are various terms used when the values of a function, its average rates of change, or its second av-
erage rates of change (the rates of change of the rates of change) are all positive (or negative), at least on
some interval. When the function is differentiable, and especially when it's twice differentiable, there are
easier ways to describe these. This is all summarized in the table below.
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Property of f: Definition: If differentiable: If twice differentiable:

Positive fla)>0 —
Negative fla) <0

Increasing w >0 f(a)>0
Decreasing f(bl)) : f(a) <0 f(a) <0

Concave upward >0 f"(a)>0

c—a b—a
fle) = f)  f(b) — f(a)
Concave downward c=b b-a J1b) = f'a) <0 f"(a)<0
c—a b—a

In all of these, the function f has the given property on some interval if the given condition holds whenev-
er a, b, and ¢ are distinct numbers in that interval. (They must be distinct to avoid division by zero.)
Generally, it's much easier to work with the rightmost condition for every property, but you can't do
that if the necessary derivatives don't exist. Even if the function isn't differentiable at all, it still makes
sense to say whether or not it's concave upward or downward.
Incidentally, here is some other terminology that you may see for these properties:

e Sometimes people use > and < in place of > and <. If you want to be clear, you can use adverbs:
‘strictly’ for the definitions above (using > and <) or ‘weakly’ for the versions with > and <.

e Sometimes people put the word ‘monotone’ in front of ‘increasing’ and ‘decreasing’, even though it
really isn't necessary. (However, when people use this word, they are more likely to mean <weakly>
too, even if they don't say so.)

e Alternatively, if the word ‘monotone’ is used alone, then it means <increasing> (probably <weakly in-
creasing»); the corresponding word for <decreasing> (usually <weakly decreasingy) is ‘antitone’ (but
this word is fairly rare).

e If the word ‘concave’ is used alone, then it means <concave downard>; the corresponding word for
<concave upward> is ‘convex’ (and this word is extremely common). Again, people who use this ter-
minology are more likely to mean <weakly>.

3.16 Graphing

If you want to have a complete graph of a function f, then these are all of the things that you should
make sure show up:
e z =0, if f is defined at that point;
r — —o0, if f is defined in that direction;
T — 00, if f is defined in that direction;
x — ¢, if f is defined in that direction, whenever f is undefined or discontinuous at c;
x — ¢, if f is defined in that direction, whenever f is undefined or discontinuous at c;
x = ¢, if f is defined at that point, whenever f is undefined approaching ¢ from either direction (or
both);
x = ¢, whenever f(c) = 0;
z = ¢, whenever f’ is undefined or discontinuous at ¢, if f is defined there;
, whenever f’(c) = 0;
z = ¢, whenever f” is undefined or discontinuous at ¢, if f is defined there;
x = ¢, whenever f”(c) = 0.

o

e o 0 o o
8
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3.17

This should be sufficient whenever f is a twice-differentiable function whose domain is an interval, or more
generally whenever f is piecewise twice-differentiable: a piecewise-defined function in which the domain

of each piece is an interval and in which each piece is twice-differentiable except possibly at its endpoints.
(There are weirder functions that can't be put in this form, but you shouldn't have to deal with them in
this class.)

If you have a graphing calculator, then you may use it, but you still need to ensure that all of the fea-
tures listed above appear. At the very least, this may require you to adjust the calculator's graphing win-
dow. If you're graphing by hand, then you'll get the best results if you know the values or limits of f, f,
and f” for all of these, but you should at least get f for all of them and f’ whenever you looked there be-
cause of something involving f’ or f”. You can also look at points in between these (assuming that f is
defined there).

Optimization

Literally, optimization is making something the best, but we use it in math to mean maximization,
which is making something the biggest. (You can imagine that the thing that you're maximizing is a nu-
merical measure of how good the thing that you're optimizing is.) Essentially the same principles apply
to minimization, which is making something the smallest. (And pessimization is making something the
worst, although people don't use that term very much.) A generic term for making something the largest
or smallest is extremization.

In theory, optimization is simply finding absolute extrema, which is most easily done for continuous
functions on closed, bounded intervals. In that case, the maximum and minimum must both exist, by the
Extreme Value Theorem, and each of them must occur at either the endpoint of the interval or where the
derivative of the function is either zero or undefined. However, practical problems cannot always be mod-
elled in this way, so we will need some more general techniques.

The key principle of applied optimization is this:

A quantity u can only take a maximum or minimum value when its differential du is zero or un-
defined.

If you write u as f(x), where f is a fixed differentiable function and x is a quantity whose range of possi-
ble values you already understand (typically an interval), then du = f’(z)dz. So u can only take an ex-
treme value when its derivative (with respect to x) is zero or undefined or when you can no longer vary
x however you please (which must occur at the extreme values of z and typically only then). This recre-
ates the situation that I referred to above, finding the extreme values of a function defined on an interval.
However, the principle that du is zero or undefined applies even when w is not explicitly given as a func-
tion of anything else.

Be careful, because v might not have a maximum or minimum value! Assuming that u varies continu-
ously (which it must if Calclulus is to be useful at all), then it must have a maximum and minimum value
whenever the range of possibilities is compact; this means that if you pass continuously through the possi-
bilities in any way, then you are always approaching some limiting possibility. (In terms of u = f(z), this
is the case when f is continuous and its domain, the range of possible values of z, is a closed and bounded
interval.)

However, if the range of possibilities heads off to infinity in some way, or if there is an edge case that's
not quite possible to reach, then you also have to take a limit to see what value u is approaching. (In
terms of u = f(x), if the interval is open or unbounded at either end, then there is a direction in which
2 could vary but in which there is no limiting value of = in the range of possibilities.) If any such limit
is larger than every value that u actually reaches (which includes the possibility that a limit is co0), then
u has no maximum value; if any such limit is smaller than every value that u actually reaches (which in-
cludes the possibility that a limit is —o0), then « has no minimum value.

So in the end, you look at these possibilities:

e when the derivative of u is zero or undefined,
e the extreme edge cases, and
e the limits approaching impossible limiting cases.
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The largest value of u that you find in this way (regardless of whether this value is actually attained or

is only approached in the limit) is called the supremum of u; similarly, the smallest value of u that you
find is called the infimum of u. If u actually takes the value of its supremum, then that same value is also
the mazimum of u; but if u only approaches its supremum in a limit, then it has no maximum. Similarly,
if u actually takes the value of its infimum, then that same value is also the minimum of u; but if u only
approaches its infimum in a limit, then it has no minimum.

Here is a typical problem: The hypotenuse of a right triangle (maybe it's a ladder leaning against a
wall) is fixed at 20 feet, but the other two sides of the triangle could be anything. Still, since it's a right
triangle, we know that x2 + y? = 202, where x and y are the lengths of legs of the triangle. Differentiat-
ing this, 2z dx + 2y dy = 0. Now suppose that we want to maximize or minimize the area of this trian-
gle. Since it's a right triangle, the area is A = %xy, so dA = %y dx + %x dy. If this is zero, then %y dx +

%x dy = 0, to go along with the other equation 2x dx + 2y dy = 0.

The equations at this point will always be linear in the differentials, so think of this is a system of
linear equations in the variables dz and dy. There are various methods for solving systems of linear equa-
tions; I'll use the method of addition (aka elimination), but any other method should work just as well.

So %y dx + %x dy = 0 becomes 2xydz + 222 dy = 0 (multiplying both sides by 4z), while 2z dz + 2y dy = 0
becomes 2xy dx + 2y* dy = 0 (multiplying both sides by ). Subtracting these equations gives (2% — 2y?)dy =
0, so either dy = 0 or 22 = y?. Now, x and y can change freely as long as they're positive, but we have
limiting cases:  — 07 and y — 07. Since 22 + y2 = 400, we see that £2 — 400 as y — 0; since x is posi-

tive, this means that x — 20 as y — 0. Similarly, y — 20 as £ — 0. In those cases, A = %xy — 0. On the
other hand, if 22 = y?, then x = y (since they are both positive), so x,y = 10v/2, since z2 4+ y? = 400. In

that case, A = %xy = 100.

So the largest area is 100 square feet, and while there is no smallest area, the area can get arbitrarily
small with a limit of 0.

3.18 Economic applications

In word problems in economics or finance, a few quantities arise regularly, which you should know about.

e Quantity in this context has a specific meaning: the amount of a good or service made and/or sold
in a given period of time. Quantity is thus measured in such units as pounds per week, items per
year, or litres per hour. Quantity is variously denoted ¢ or x.

e Price (or unit price) is the amount of money received for a given amount of goods or services. So
price is measured in units such as dollars per pound or euros per item. Price is denoted p, a lowercase
letter.

e Revenue is the amount of money received for goods or services in a given period of time. Revenue is
measured in dollars per week, euros per year, etc. Revenue is denoted R, and we have this equation:

R = gp.

(Notice that the units make sense in this equation; amount over time, multiplied by money over amount,
becomes money over time.)

e Cost is the amount of money that the business has to spend (in a given period of time) in order to
produce and distribute their goods and services. (In this terminology, cost is completely different
from price.) Like revenue, cost is measured in units of money over time.

e Finally, profit is the amount of money that the business makes and keeps in a given period of time.
Unlike everything else here, it makes sense for profit to be negative. Profit is denoted P, an uppercase

letter, and we have another equation:
P=R-C.

In business, you generally want to maximize profit: make it not only positive but as large as possible.
Even if you don't want to maximize profit as normally measured (because you care about something else
besides money), economists typically try to calculate whatever else you care about and still say that you
maximize profit (in a generalized sense).
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For any of these quantities, we can discuss their average or marginal values. In this context, the aver-
age profit/cost /etc is the profit/cost/etc divided by the quantity:

C

P= =,
q

P _
~—, C=
q

(As you can see, a bar is used to indicate this ratio. Be careful; when we get to applications of integrals,
this bar will be used to denote an average in a different way.) On the other hand, the marginal prof-

it/cost /etc is the derivative of profit/cost/etc with respect to quantity:

podl i
a0 a
(As you can see, a prime tick is used to indicate this derivative, which is safe in context because it always
means the derivative respect to q. For a derivative with respect to time, which is also important in this
context even though we aren't doing any examples of that in this class, a dot may be used instead.) Al-
though the units for a marginal or average quantity are the same, they represent different things!
Finally, people also speak of the marginal average profit/cost/etc:

b _d(Pla) _qP'—P -

= =P — P,
dg q?

r_ —

C,:d(C/q) _qC - O:C'—C,
dq q

The marginal profit is particularly important, since it must be zero when profit is maximized (as long as
the maximum profit occurs when it is still possible to vary the quantity in any way desired); and since the
marginal marginal profit (the second derivative of profit with respect to quantity) is typically negative,
the profit really will be maximized when the marginal profit is zero. However, in the absence of informa-
tion about the revenue, there is a rule of thumb that one should minimize the average cost instead, which
means finding where the marginal average cost is zero.
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4.1

4 Integrals
This is a summary of the concepts of integral calculus.

Definite integrals

Just as the differential of a finite quantity is an infinitesimal (infinitely small) change in that quantity, so
the definite integral of an infinitesimal quantity is the sum of infinitely many values of that quantity,
giving a finite result. If  and y are standard quantities (neither infinitely large nor infintely small), then
ydzx is a typical infinitesimal quantity. (An expression like this is called a differential form.) If we add this
up from the point where x = a to the point where x = b, then we get the definite integral

b
ydx.

r=a

As long as the same variable z is used throughout, then it's safe to abbreviate this as

Lby dz.

For example, 135(2t + 4) dt is the sum, as ¢ varies smoothly from 3 to 5, of the product of 2¢ + 4 and
dt (the infinitesimal change in t) at each stage along the way. We can think of this product as giving the
area of a rectangle whose height is 2¢ + 4 and whose width is d¢; if we line these rectangles up side by side,
then they combine to give a trapezoid:

15+ /

14+
2 + 4

134
124

t=5
1,,

} | | } | t
-1 1 2 3 4 5 5

We can find out the area of this trapezoid using geometry, since its width is 5 — 3 = 2 and its height varies
linearly from 2(3) 4+ 4 = 10 to 2(5) + 4 = 14. Therefore,

5 10+ 14
@ +4)dt = 2T 99y
3 2

Normally, you can't evaluate an integral by drawing a picture like this; I'll come back to how we can
calculate it after a brief digression.
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4.2 Antidifferentials

If du = ydx, then ydx is the differential of u, as you know. We also say that u is an antidifferential
of ydxz. However, u is not the only antidifferential of y dz; if C is any constant, then d(u + C) = y dz too,
so u + C is also an antidifferential of y dx. However, for a continuously defined quantity, there is no other
antidifferential of y dz. Even if there are gaps in the definition of the quantity, we can say that u 4+ C' is
an antidifferential of du if and only if C' is a local constant, meaning that it can change value only across
a gap where u is undefined. (Ultimately, this is a consequence of the theorem that if the derivative of a
function on an interval is always zero, then that function must be a constant; the relevant function here is
the difference between the functions that give any two possible antidifferentials.)

Antidifferentials are denoted by ‘[, so we have

fduzu—FC'

by definition. (This looks similar to the notation for a definite integral, which makes sense reasons that
will be explained below, but you can tell the difference because there are no bounds attached to the sym-
bol.) For example,

d(t? + 4t) = 2t dt + 4dt = (2t + 4) dt,

SO
f(2t +4)dt = fol(t2 +4t) =2 + 4t + C.

As 2t + 4 is the derivative of t? + 4t with respect to ¢, we also say that t> 4+ 4¢ is an antiderivative of
2t + 4 with respect to t. An antidifferential or antiderivative is also called an indefinite integral; so ‘in-
definite integral of (¢* +4) dt’ (antidifferential) and ‘indefinite integral of ¢* + 4 with respect to ¢’ (antide-
rivative) both mean [ (¢ + 4) dt.

To find antidifferentials (or antiderivatives), we must run the rules for differentials (and derivatives)
backwards. This is often a subtle process, which I'll return to after a brief digression.

4.3 The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus relates definite and indefinite integrals. There are two parts:
b
1. d(Li 10 dt) — f(b)db — f(a)da;
b =a
2. | df(t)=f(b) - f(a).
t=a

The first part applies whenever f is a continuous function (assuming that a and b are differentiable quan-
tities); in particular, it claims that the integral exists and is differentiable. The second part applies when-
ever f is a differentiable function (assuming that ¢ is a differentiable quantity); in particular, it claims that
the integral exists.

Although both of these parts refer directly to definite integrals, indefinite integrals (antidifferentials)
appear implicitly because of the presence of the differentials. Specifically, the first part claims that the
definite integral that appears in it is an antidifferential of the differential form on its right-hand side, and
the second part shows how to evaluate a definite integral of a differential form whose antidifferential is
known.

If you want to express these without refering to the function f, then you can write them thus:

b
Loa( [ w) =wl;
bfa w wly;
2. f du = u|Z
Here, I'm using w to stand for an entire differential form (for which people often use Greek letters) and

u\z is short for u|, — u|,. These basically say that d and | cancel as long as you move the bounds on the
integral into bounds on a difference.
It's the second part of the theorem that we use the most. If you want to evaluate a definite integral

f;y dz, then you should first figure out the indefinite integral [y dz. If the answer to this is u (or more
generally u + C), then this means that y dz = du; that is, u is an antidifferential of y dz. Therefore, f;:ay dz =
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4.4

Lf:adu, and the FTC tells us that this is equal to u|2,:a. As this last expression is simply a difference,
you can figure it out using simple algebra.
For example, consider

5
L:3(2t +4)dt.

In the last section, we saw that [(2¢ +4)dt = ¢? + 4¢ + C; in other words, (2¢ +4) dt = d(t* + 4t). There-
fore,

f35(2t +4)dt = j;d(tQ +at) = (2 +48)|]
= ((5)*+45)) — ((3)* +4(3)) = (45) — (21) = 24,

(Notice that this is the same answer as when I did this using geometry!)

This also explains why the same term ‘integral’ and symbol ‘[ are used for both the definite integral
(a sum of infinitely small quantities) and the indefinite integral (the antidifferential). They at first appear
to be completely different concepts, but in reality they are closely related, through the Fundamental Theo-
rem of Calculus.

Integration techniques

This leaves us with one problem: how do we find indefinite integrals?
Each rule for differentiation gives us a rule for integration. In the table below, I have some rules for
differentiation (all of which you should know by now), together with corresponding rules for integration:

d(u 4+ v) = du + dv, f(y—l—z)dx:jydx—i—fzdm;
d(ku) = kdu (when k is constant), fky dz = k:fy dz (when k is constant);
d(uv) = vdu + udv, ju dv =uv — j’u du;

1
d(u"™) = nu™ "' du (when n is constant), u™du = ﬁumﬂ + C (when m # —1 is constant);
m

d(e") = e" du, fe“ du=¢e"+C;
1 1
d(In |u]) = ﬂdu, fﬂ du =1In|u| + C;
d(sinu) = cos u du, jcosudu =sinu + C;
d(cosu) = —sinudu, fsinudu = —cosu+ C;

etc.

Using these rules, you can work out all of the integrals in the textbook through Chapter 6, and then some.
For example, to find [(2¢+ 4) dt:

[(@t+aydt= [2tde+ [4dt=2[t"de+4[dt = 2(%#) FAt+C = +4t+C.

This is the same answer as we got before, but this time I didn't have to guess the answer and get lucky; I
was able to actually calculate it. That's how you're going to be doing most of the problems.

For more complicated integrals, there are fancier techniques. Rather than learn all of these, you can
program them into a computer. There are even free websites that will do this for you!
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4.5

4.6

4.7

Summary

To find the indefinite integral [y dz, you need to use integration techniques; your answer will still have the

variable in it and should end with a new local-constant term C'. To find the definite integral f:y dx, first
find the indefinite integral and then take a difference; assuming a and b are constants, your answer will
also be constant (and the C' will disappear).

So for example, to find the definite integral of 2¢ + 4 with respect to ¢t from 3 to 5:

5
= (1 +4t)|; = 45 — 21 = 24,
3

j35(2t+4) dt = f;(%l dt +4dt) = (2(%#) +4t)

This is simply a combination of calculations that I did earlier, to find the indefinite integral and to apply
the FrC.

Semidefinite integrals

Besides the definite integral fff(:z) dz and the indefinite integral [ f(x)dz, there is also a semidefinite
integral fa f(x)dx. While the definite integral works out to a specific value (as long as f, a, and b are
specified), the indefinite and semidefinite integrals still have the variable z in them. On the other hand,
while the indefinite integral depends on an arbitrary C, the definite and semidefinite integrals don't have
this. So the semidefinite integral fits in between the other two kinds.

Here is one way to define it:

| fwyde = Li F(1) dt.

That is, introduce a new variable ¢ and use the old variable x as the upper bound of a definite integal.
The Second Fundamental Theorem of Calculus,

)
r=a

o= (70102

also tells us how to evaluate semidefinite integrals:

fz)dx = (Jf(a:) dm)

o (jf(x) dm)

r=a

flx)dx = ff(:r)dm— (If(ac)dx)

r=a r=a

In other words, work out the indefinite integral as usual; then, instead of evaluating this at two values of
the variable before subtracting, evalute it at one value and keep the variable in the other expression (then

subtract). For example,
2 2 2 1 2 1 1
[ xdx:‘i,(i) _2? (W _ 1, 1
2=1 2 \2/|,_, 2 2 27 2

(You can probably skip the step with |,_; in it, since once you've written down 22/2 before the minus

sign, you can immediately plug in 1 for x to get (1)2/2 after the minus sign.)

Integration by parts

Integration by parts is based on the Product Rule for differentiation. In terms of differentials, the Product
Rule says that d(uv) = vdu + udv. Taking indefinite integrals of both sides and rearranging the terms

slightly, this becomes
Iudv =uv — fv du.

Unlike integration by substitution, you don't rewrite the problem in terms of w (nor v). Instead, you iden-
tify suitable u and v and their differentials and then write out the equation above in terms of z (or what-
ever your variable is).
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You want to pick u and v so that [udv is the integral that you care about, which means splitting up
the factors of the integrand, some into v and some into dv. Once you know u and dv, you can find du
and v, at least if you know how to integrate whatever dv is. (When you do this integration of dv to get
v, you have a choice up to a local constant; you're deciding what v is, so just pick the simplest expression.)
If you split things up well, then [vdu will be simpler than what you started with.

Here is my advice on how to split factors into u and dv so that integration by parts will make the
next integral easier. The items on the top of the list are the best choices for dv, and the items on the bot-
tom are the best choices for u. Put as many factors as you can into dv, starting at the top of this list and
working your way to the bottom, as long as you still have something that you know how to integrate to
get v. Then put whatever factors are left over into .

dz (this must go into dv),

e” and other exponential expressions,

sinx and other trigonometric expressions,

polynomials and other algebraic expressions,

In z and other logarithmic expressions,

asinz = sin~ ' z and other inverse trigonometric expressions.

In complicated cases, you may have to use integration by parts more than once. Just keep going until
either you get something that you can handle or you get back to where you started. In the latter case, you
can set up an equation to solve for your integral.
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5 Differential equations

A differential equation is an equation with differentials or derivatives in it. Here are three examples of
differential equations:
f'(@) = 3f(x);

dy

=2 _ 3y
dz Y3
dy = 3y dz.

In fact, these three examples are all basically equivalent. If you are given the first of these, then you should
make up a name for f(z), say y, and turn the first equation into the middle one. And in the middle equa-
tion, you should clear fractions to turn it into the last one. (But any of these might be the original form,
depending on how the equation is thought up in the first place.)

To actually solve this equation, you can use the technique of separation of variables. After reach-
ing the last equation, notice that x only appears on the right-hand side but y appears on both sides. If
you divide both sides by y, however, then y appears only on the left-hand side. (If y = 0, then dividing
by y is invalid; I'll come back to that later.) Then the variables are separated:

d_y =3dx.
Yy

(If you're ever unsure which side to put which variable on, then try to put the differentials in the numera-
tors of any fractions. In this example, 1/dz = 3y/dy would have the variables separated just as much, but
it would be less useful, because the next step, below, wouldn't work.)

Now take the indefinite integral of each side of the equation:

fdzy - f3dx;

In|y| + C1 = 3z + Cy;
In|y| =3z + Cy — Ch.

Each integral gives an arbitrary constant, and I subtracted to put them both on the right-hand side. How-
ever, since Cy — C7 could itself be any constant, you can just write this as

In|y| =3z +C.

In practice, you can skip the other steps with constants and just remember to tack a constant onto the
last integral in the equation.

We're not finished; this equation is no longer a differential equation, but it also hasn't been solved for
anything. If we want to solve it for y, then we still need to do some algebra to get y by itself on its side of
the equation:

ly| = ¥+,

y = +377C,

(If you're given an equation in z and y, then it's a good bet that they want you to solve for y; if you're
given an equation like the first example with a function in it, then it's a good bet that they want you to
solve for the function. But in principle, you could solve any of these equations for x instead.)

There is one mistake here, which is the step where I divided by y. If y = 0, then this is invalid. Fur-
thermore, if y = 0 always, then the equation is true, because then both sides of the original equation (in
any of the three forms) are 0. (This sort of special exception is fairly common with differential equations.)
So a complete solution is
:l:e3ac+C

Y= ory =0.
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5.1

You can make the final solution look a bit nicer by writing +e3**¢ as +e“e?* and then making up a name
for +e®, say P. Since e could be any positive number, P could be any positive or negative number; the

exception y = 0 is captured by P = 0. So the nicest form of the final solution is
y = Pe’,

where P is an arbitrary constant. (However, you shouldn't always expect to be able to do a simplifying
trick like that.)
Of course, if the original form of the equation is the first example, then you should write this solution
as
f(z) = Pe®”.

Initial-value problems

An initial-value problem consists of a differential equation together with enough data to determine the
arbitrary constants. Here are three examples of initial-value problems:

f'(@) = 3f(x), £(0) = 5;
dy
T = Y Ulomo =5
dy =3y dz, y[,_, = 5.
Again, these three examples are all basically equivalent; if y = f(z), then y|,_, means f(0).
There are two ways to solve an initial-value problem. One is to ignore the initial value and just solve
the differential equation, at first. In this example, that gives us

y = Pe’*,

as you've seen. Then you put in the given values, which in this case gives

5= Pe30),
Now you can solve for P:
5=P(1);
P =5.

Therefore, the final answer to the initial-value problem is
y = 5e3”.

(Again, if the original form of the equation is the first example, then you should write this solution as
f(x) = 5e3%.)
Another technique is to solve the entire problem at once with the help of semidefinite integrals (page 31).
Let's solve the example
dy =3yde, yl,_, =5

using semidefinite integrals. Again, separate the variables:

dy _
y

3dx.

Now instead of taking indefinite integrals of both sides, take semidefinite integrals, using the initial value
to guarantee that you're doing the same thing to each side even though it's being done using different vari-
ables. In this case, since y = 5 when z = 0, a semidefinite integral starting at y = 5 is the same operation
as a semidefinite integral starting at x = 0, so

d
| Y_( 3da
y=5 1Y =0
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5.2

Evaluating these using the FTC gives
In |y| — In|5] = 3z — 3(0).

So compared to the integration without the initial value, the difference is that we know which specific con-
stants to use in each integral. Now again, solve for y to finish:

In|y| =3z — 0+ ln5;
|y‘ :eBx-i—lns_

y = £5e3.

This is not completely perfect, because of the +, but we can figure this out by checking whether y really
is 5 when = = 0; this will only be true if the sign is +. Finally, since we did again divide by y while solv-
ing this, check to make sure that y is never zero in the solution; it's not, so the final answer is

y = 5e32,

Of course, this is the same solution as we got before, but this time we got the entire solution all at
once without having to first get a solution with an arbitrary constant and then solving for the constant.
You may solve intial-value problems using whichever method you prefer.

Integrals as solutions to equations

Although we normally solve a differential equation by taking integrals, you can also think of an integral
as a solution to a differential equation. For example, the indefinite integral [ f(z)dz is the solution to

the differential equation dy/dz = f(z), and the semidefinite integral [ _of(x)dz is the solution to the
initial-value problem (dy/dxz = f(z),y|,_, = 0). More generally, the solution to the initial-value prob-
lem (dy/dz = f(z),yl,_, = ¢) is [,_, f(x)dz 4 c. These kinds of initial-value problems are in Sections 4.8
and 5.5 of the textbook and are covered in Calculus 1; more general differential equations and initial-value
problems are in Section 7.2 and are covered in Calculus 2.

(There are even more general differential equations than I have discussed here, ones in which it is im-
possible the separate the variables in the equation; some of these are covered in Chapters 16 and 17 of the
online-only version of the textbook. Yet more general differential equations are covered in SCC's course on
differential equations, which is basically Calculus 4, but using a different textbook dedicated to that sub-
ject. Beyond that, there are graduate-level courses that you could take at a university; in fact, the study
of differential equations is a major field of active research in mathematics. We are very far from knowing
how to solve them all!)
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6 Sequences and series

A sequence is a function whose domain consists only of integers. (It's not necessary that all integers be-
long to the domain, just that nothing else does.) To emphasize that we're considering a sequence, people
often write f,, instead of f(n) when f is a sequence (and n is an integer in its domain). In fact, ‘f’ is not
a very common name for a sequence; ‘a’ and ‘2’ (or letters near them) are much more common. Similarly,
the argument of a sequence is usually denoted by a letter near the middle of the alphabet (usually between
4’ and ‘n’), since these letters are often used for integers. (Still, as with any other variable, you can use
any letter that you like in principle.) There is also some redundant terminology: instead of speaking of the
input (or argument) and output (or value) of a function, we speak of an index and term of a sequence.
For example, if a,, = (—2)", then the term with index 3 is ag = (72)3 = —8. (Sometimes people say that 8
is the 3rd term, but this really only works if a,, is undefined when n < 1.)

Since Calculus is about continuously varying quantities and a sequence has only discrete values (at
most one for each integer), there's not much Calculus to be done with a sequence. Nevertheless, there is
some: you can consider the limit of a sqeuence approaching infinity (or negative infinity). That is, while

hm ay, (for finite c) , and jan dn don't make sense, nevertheless lim a, and lim a, can make
n—oo n— —0oo

sense. I'll focus on the ﬁrst of these, which you can call simply the limit of the sequence, because many
of our sequences will only be defined at natural numbers; however, limits approaching negative infinity re-
ally aren't much different.

Sometimes it's convenient to think of a sequence as the restriction to integers of some more general
function. For example, if you're working with the sequence a,, = 3n2, then you can think of the function
f(x) = 322%; while f is defined for all real numbers and a is defined only for integers, otherwise they are
the same thing. Since lgn f(z) = oo, this tells us that hm a, = 00 too. So most of the time, you can

work out the limit of a sequence in the same way that you Work out any other limit approaching infini-
ty. If a,, = f(n) for n an integer and f has a limit (possibly infinite) approaching infinity, then a has the
same limit; this is a theorem. However, it's possible that a has a limit even when f does not, for example
if f(x) = sin (7). This has no limit as 2 — oo, since all values between —1 and 1 are taken for arbitrarily
large values of 2. When n is an integer, however, sin (7n) = 0, so the limit of the sequence a,, = sin (7n)
(which is really just the sequence a,, = 0) is 0.

There are some more systematic ways of turning a sequence into a function that's defined everywhere
(or almost everywhere). These involve the floor and ceiling operations: the floor |z] of a real number x
is the largest integer that's not larger than z, and the ceiling [z] of x is the smallest integer that's not
smaller than x. Ever since you first learnt to round numbers up and down, you've been using these opera-
tions, even if you didn't have names for them; for example, |2.37| = 2 (round down to the nearest integer),
and [2.37] = 3 (round up to the nearest integer). Be careful with negative numbers: |—2.37| = —3, and
[—2.37] = —2. An important inequality about floors and ceilings is

[z] <@ < fa].
As long as x is itself fractional (that is not an integer), then

[z] <a < fa],
and in that case you also have

lz] +1=[x].

(But integers are an exception; if x is an integer, then |z |, x, and [z] are all equal to each other.)

Using these operations, we can convert any sequence into a function defined more generally: if a is a
sequence, then we can consider a|,| and af,7. If a is defined for all integers, then these will be defined for
all real values of z; even if a isn't defined for all integers, still a|,| and ap,) will be defined for many more
real numbers. And now we have this theorem:

IILH;O ajz| = hm ap = wlgr;o arg]-
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6.1

These functions a|,| and ar,] are unusual, since they are (for most sequences) discontinuous at every inte-
ger, but they can be handy to think about.

You can see a picture of these in Figure 9.11 on page 501 of the textbook. (The textbook is using this
picture for a different purpose, although it is related, as you'll see later on.) In this picture, the book be-
gins with a function f and then constructs a sequence a out of it by defining a,, = f(n). Then on the top
(Figure 9.11.a), it shows the graph of y = f(z) in blue along with a graph of y = a|,) = f(|z]) in magen-
ta; while on the bottom (Figure 9.11.b), it shows a graph of y = f(x) in blue again but now with a graph
of y = ary1 = f([z]) in magenta. You'll notice that the sequence and all three of the other functions tend
to the same limit (which in this case is 0). Even if the textbook had started with a function f that did
not converge to a limit, the sequence and the two functions defined by floor and ceiling would still all con-
verge to the same thing,.

Series
I wrote above that you can't do much Calculus on sequences; in particular, I remarked that the deriva-

da
tive d—n and integral jan dn don't make sense. Ultimately, this is because dn, an infinitesimal (infinitely
n

small) but non-zero change in n, doesn't make sense when n takes only integer values; the smallest possi-
ble non-zero change in n is a change by 1, which is not infinitely small.

But there is something analogous to derivatives and integrals. The analogue to derivatives is the dif-
ference A,a,, = a,+1 — a,, which is the difference of a,, with respect to n. (For example, A,,(3n) =
3(n+1) —3n =3, and A, (m2) = (m + 1) — m2 = 2m + 1, which means that if n = m?2, then A,,n =
2y/n + 1.) Whereas the derivative is defined as a limit of difference quotients, the difference simply is a
difference quotient where the change in n is A,n = 1. (Unfortunately, sequences do not have an analogue
of the differential that will take care of changing from one variable to another. This is because A,n - A u
bears no particular relationship with A,,n, even assuming that all of the values of u are integers.)

The analogue to an integral is a series, which is the result of adding up some of the terms of a se-
quence. (This word can be confusing, in two ways. The first is a quirk of grammar: the plural of ‘series’
is just ‘series’ again. You can say ‘serieses’ as the plural, although this is nonstandard, but using ‘serie’ as
the singular is just plain wrong. The other confusing thing is that, in ordinary language, ‘sequence’ and
‘series’ mean basically the same thing; but in mathematics, a sequence is the more basic concept, being
essentially just a list of numbers or other quantities, while a series is a sum that you build out of a se-
quence.)

Like differences, a finite series has no Calculus in it; you just add up some numbers. For example,

S+ =(@+1)+ (@ +1)+ ()7 +1)+ (0> +1) + ((0° +1)

=104 17426 + 37 + 50 = 140.

This means the sum of all of the values of n? + 1 as n runs from 3 to 7, taking only integer values along
the way. That is, it's the sum of all of the values of n? + 1 as n takes the values 3, 4, 5, 6, and 7, which is
what I calculated.

8
Strictly speaking, this is analogous to a proper integral such as j (x2 + 1) dz. Actually, this is more
xr=
than just an analogy: a series is an integral, albeit one whose Calculus content is trivial. Specifically,

j ) .
Jj+1 J
Zan = L:i a|y) dx = m:i_lam dx.

n=t

(So in this example, ZZ:S (n?+1) = ff:g(LxJ2 + 1) dz.) Since these are integrals of piecewise-constant
functions, working them out is easy and just results in the original sum. So you don't want to evaluate a
series by turning it into an integral; still, it can be handy to know that this can be done, becuase we know
a lot of theorems about integrals that now automatically apply to series.
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We traditionally speak of a sum from i = a to i = b, written ZZ;Z or simply Z?:a, where b — a is a
whole number (0, 1,2, ...); assuming for simplicity that a is an integer (so that b is also), this sum covers
every integer i that satisfies the inequality a < i < b, or in other words all of the integers in the interval
[a,b].

In some ways, it's better to think of such a sum as running from i = a to ¢ = b+ 1, but with the last
item not quite included; that is, the sum covers every integer ¢ that satisfies the inequality a <i < b+ 1,
or in other words all of the integers in the interval [a,b+ 1). Of course, from this perspective, it's not the

number b that matters but the number b + 1; if we call this B, then we can write ) _, < p for what is nor-

mally written as Z?:a. Note also that it makes perfect sense to have B = a (in other words, b — a = —1);
then we are adding up no terms, and the sum is 0.

One nice consequence is that the number of terms in the sum is simply B — a rather than b —a + 1.
Perhaps more importantly, we have this theorem:

D> =D
A<i<B B<i<C A<i<C
which looks nicer than ,
C C
DI
i=a i=b+1 i=a

The upshot of all of this is that, when you see (for example) a sum as ¢ runs from 2 to 5, you might want
to think of it as a sum over 2 < i < 6 instead.

Some of the formulas for summing cubic polynomials are slightly simpler. With the traditional num-
bering, we have these (from pages 295 and 296 of the textbook):

¢ =c(b+1) if ¢ is constant;

~.
o HM@-
o

)

~.
I

b+1>
2

e = (

s
I
=

A
~.
[
I

éb(b +1)(2b+1);

&
S|
=
~
I

b+1>2

1
3 _ 1o 12:(
4b(b+) 5

-
I
o

(Here,
n n!
(0) ==

where n! =n(n —1)(n —2)---(3)(2)(1), is an expression that you don't need to learn if you don't want to
but which is used in many mathematical formulas.)
With the off-by-1 numbering, we have these:

E c = ¢B if ¢ is constant;
0<i<B

>, =5 0=(3)
> igzéB(B—l)QB—l);

2
> i3:iBz(B71)2:(§) .
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Especially if you use (? ), then some of these are simpler.
It's also handy to have more general formulas starting at an arbitrary place rather than at i =0 or 1.
With the traditional numbering, we have these:

b
Zc =c¢(b—a+1) if ¢ is constant;

i=a

b 1
S i= la+b)b—a+1);
3 1
ZZQ = 6(2a?+2ab+2b2 —a+0b)(b—a+1);
v 1
Zﬁ - Z(a2+b2—a—l—b)(a+b)(b—a+1).

With the off-by-1 numbering, we have these:

Z ¢ =c¢(B — A) if ¢ is constant;
A<i<B

(B—A)(A+B-1);

~.
Il
N

(B — A)(24% +2AB +2B* —3A - 3B + 1);

(B—A)(A+B—1)(A%+ B>~ A— B).

~. .

w

I
e =2

A<i<B

These are now about equally complicated.

6.2 Infinite series

Besides this, we also consider infinite series, which are analogous to infinite improper integrals. Just as

o b
f f(z)dx is defined as blim f(z)dx, so an infinite series is defined as a limit of finite series:
Tr=a —o0 Jr=a

o) J
E an = lim g Qs

Jj—roo A

n=

n=t

or equivalently limy .o >, ., . ; Gn; the finite sum Zi:l an (Or D, o 0n) is called a partial sum of the
series. (As with infinite integrals, you can also replace 7 with —oo, but we won't be doing that very often.)
Now there is a limit (and hence Calculus) involved even for sequences. If this limit converges (to a finite
real number), then we say that the infinite series converges (to that number); otherwise, it diverges.
Sometimes it's useful to say that it diverges to co or —oo (if it does), but this still counts as divergence.

You can also write
e oo
E an = j |y d;
r=1
n=i

that is, an infinite series isn't merely analogous to an infinite improper integral, it actually is an infinite

improper integral, even if trying to evaluate this integral just turns it back into the series. Again, look at
Figure 9.11.a on page 501 of the textbook; this time, ignore the function f and its blue curve, but notice
how the area under the magenta staircase (which is the graph of a|,|, so the area under it is the integral

oo
L:1am dz) represents the infinite sum a3 + ag + -+ - = 220:1 G -
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6.3

It's important to distinguish convergence of a series from convergence of its sequence of terms. If we
think of the numbers ag, a1, as, and so on as forming a sequence (ag, a1, as, . ..), then this sequence con-
verges if its limit lim,,_, o, a, exists; but if we think of them as the terms of a series, then this series con-
verges if its sum ZZOZO an exists, and this is the limit of the sequence of partial sums, not the limit of the
sequence of terms.

Nevertheless, there is a relationship between a series and its sequence of terms: the series can only
converge if the sequence does, and in fact the series can only converge if the sequence of terms converges
to zero! This is because the jth term is

J Jj—1
a; = E Gp, — E G
n=i n=i
if the series converges, then
oo oo
.hmajzg an—g a, =0
j—ro0 / .
n=1u n=1u

(since j —1 — oo as j — 00), but if the series doesn't converge, then this argument is invalid and lim;_, a;
could be anything. Be careful, however, since this argument only goes one way; if the limit of the sequence
of term is zero, then that tells you nothing about whether the series converges.

The Fundamental Theorem for series

In the analogy between sequences and functions, where differentiation of functions corresponds to differ-
ences of sequences and integrals correspond to series, there is an analogue of the Fundamental Theorem of
Calculus. Just as (d/dz)([”  f(t)dt) = f(z) (the first part), so

And just as f;:a(F’(x)) = F(b) — F(a) (the second part), so

7j—1

> (Anby) = b —b;.

n=t

(In each of these, I had to stop the sum short by 1; for the full analogy, you should really think of Zfl :
as Zi<n<j, as described on page 38.)

The sum of a difference is called a telescoping series. A telescoping series converges precisely when
the original sequence (not the difference) converges:

e3¢} j—1
Anbn - 1. Anbn = 1. b - brL - 1. b — bi.
;( ) jggogl( )= lim (b; b)) = lim b,

This result is so important that I'll repeat it without the difference notation (which is not widely used):

J—00

oo
> (bng1 —ba) = lim b; —b;.
n=t

Sometimes people prefer to write this as

> (bn —bp-1) = lim b; —b; 1.
— Jj—o0
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6.4

Just as you can get a list of integrals that you can do by finding the derivatives of basic functions, so
you can get a list of series that you can do by finding the differences of basic functions. We could do this
with polynomials, for example; although it doesn't come out as simply as in the continuous case, you can
derive formulas to sum any polynomial sequence. But an even simpler example is an exponential sequence.
That is, consider the difference of r™ with respect to n, where r is constant.

Ap(r™) ="t e = (r — 1),
If anything, this is simpler than d(r*)/dz = r* In z; the natural logarithm has been replaced by a simple
subtraction. Conversely, if you want to sum r”, you just need to divide by the constant r — 1. So
J_ i
r—1

i<n<J

which is more commonly written as
pt— pitl

Zr": 1—r

Of course, this doesn't work if » = 1; for that, Zi:z’ 1"=J—i,0or ) 1"=j—i+1.

A series like this is traditionally called a geometric series. The infinite version converges whenever
lim ;o 77 exists (for 7 # 1), which happens precisely when |r| < 1, in which case the limit is actually 0.
(If r > 1, then the limit is oo; if » = 1, then the limit is lim_, o J = oo; if » = —1, then it oscillates be-
tween 1 and —1; and if r < —1, then it oscillates between oo and —oo.) Therefore,

> it r
n— _ —
2T T

n=u

if |r] < 1.

Convergence tests

Here is a summary of all of the convergence tests that we use in this class. Every test has certain con-
ditions under which it gives no answer, and then you'll have to try a different test. The first few terms are
always irrelevant to convergence questions, so every condition only refers to what the terms do eventually:
at some term a; and then for every term ay for k > j. (I'll write a for the sequence of terms of the series;
that is, we are looking at

oo

>

n=t

for some integer i.)

Every convergence test, if it concludes that a series converges, gives a sequence of approximations of
the sum of the series, along with an upper bound on the absolute value of the error of the approximations.
Usually, however, we cannot compute the sum of the series exactly.

The definition

Even the definition of convergence can be viewed as a test. The sequence s in this test always exists; it's
the sequence of partial sums in the definition. The problem, however, is that you might not be able to find
a nice formula for it!

So, can you find a nice sequence s such that

m
Sm = Z a;
n=s
(eventually)? If not, then this test gives no answer. If so, then go on.
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Does

lim s,,
m—r o0

exist (as a finite real number)? If not, then the series diverges. If so, then the series converges.

In fact,
o0 m
E a; = lim E a;
m—0o0
n=i n=i

when this limit converges (by definition).
The Telescoping Series Test

This is a slight variation of the definition that may be easier to spot. Can you find a nice sequence b such
that

ap = bn+1 —b,

(eventually) or
ap = by — bn+1

(eventually)? If not, then this test gives no answer. If so, then go on.
Does the limit

lim b,
n— o0

converge (to a finite real number)? If not, then the series diverges. If so, then the series converges.

In fact,
oo
> (bng1 —bn) = lim by, —b;
/ n—00
n=u

when this limit converges, and

E (bn — bn+1) = bz — lim bn
/ n—00
n=i

when this limit converges.
The Geometric Series Test

Can you write the series as

a, =cr”

(eventually)? If not, then this test gives no answer. If so, then go on.
Is ¢ # 07 If not, then the series converges. If so, then go on.
Is || < 17 If not, then the series diverges. If so, then the series converges.

In fact,
o0 i
cr
e =
Z 1—7r
n=u

when |r| < 1.
The nth-Term Test

This is probably the first test that you want to consider, unless the series fits one of the special forms
above.
Does

lim a,
n—oo

converge to 07 If not, then the series diverges. If so, then this test gives no answer.
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The Integral Test

Can you find a nice function f defined everywhere (eventually, say defined on [j, 00)) such that f(n) = a,
(eventually)? If not, then this test gives no answer. If so, then go on.

Does f take only nonnegative values (eventually)? If not, then this test gives no answer. If so, then
go on.

Is f monotone decreasing (eventually)? If not, then this test gives no answer. If so, then go on.

Does
o0
[ f@)de
j
converge (to a finite real number, for some 7)? If not, then the series diverges. If so, then the series con-
verges.

In this case,
POFORS IRFIOLEED SFOED SF DR WIS

for any m > j.
The p-Series Test
Can you find a real number p such that
1

Ap — —
n np

(eventually)? If not, then this test gives no answer. If so, then go on.
Is p > 17 If not, then the series diverges. If so, then the series converges.

The Direct Comparison Test for Convergence

Does the series consist of only nonnegative terms (eventually)? If not, then this test gives no answer. If
so, then go on.
Can you find a convergent series b such that

an < by

(eventually)? If not, then this test gives no answer. If so, then the original series a also converges.
The Direct Comparison Test for Divergence

Can you find a divergent series b such that
an 2> by

(eventually)? If not, then this test gives no answer. If so, then go on.
Does the series b consist of only nonnegative terms (eventually)? If not, then this test gives no an-
swer. If so, then the original series a diverges.

The Limit Comparison Test

Does the series consist of only nonnegative terms (eventually)? If not, then this test gives no answer. If
so, then go on.
Can you find a nice series b such that

converges to a positive real number? If not, then this test gives no answer. If so, then go on.
Does the series b converge? If not, then the original series a also diverges. If so, then the original
series also converges.
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The Absolute Convergence Test

Does the series
oo
Y " lail
n=i

of absolute values converge (to a finite real number)? If not, then this test gives no answer. If so, then
the original series converges.

In this case, we say that the original series converges absolutely. If the original series converges
(which we can only know by some other test) while the series of absolute values diverges, then the original
series converges conditionally.

The Ratio Test

Does the limit
lim M
n=c0 |ay,|
exist (as a finite real number or infinity)? If not, then this test gives no answer. If so, then go on.
Is this limit different from 17 If not, then this test gives no answer. If so, then go on.
Is this limit less than 17 If not, then the series diverges. If so, then the series converges.

The Root Test

Does the limit

lim %/|an|
n— 00

exist (as a finite real number or infinity)? If not, then this test gives no answer. If so, then go on.
Is this limit different from 17 If not, then this test gives no answer. If so, then go on.
Is this limit less than 1?7 If not, then the series diverges. If so, then the series converges.

The Alternating Series Test

Do we have either

an = (—=1)" |an|
or

an = —(=1)" |ay|
(eventually)? If not, then this test gives no answer. If so, then go on.

Do we have
|ant1] < fan]

(eventually)? If not, then this test gives no answer. If so, then go on.

Does

lim |ay|
n—oo

converge to 07 If not, then the original series diverges. If so, then the original series converges.

In this case,
m—+1

m oo
dan <Y an <Y an
n=1 n=1 n=u

if ay,41 is positive, and
m—+1 (e’

m

doan <y <) an
n=1 n=i n=i

if ay,41 is negative.

Other tests

There are other tests (and some of these tests can be made more powerful too), but these tests (in these
forms) are the only ones that you are responsible for knowing. In particular, every convergence problem
in this class should succumb, one way or another, to at least one of these tests. However, there is no end
to convergence tests, and mathematicians are still developing new ones, while some series have resisted all
efforts so far!
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7.1

7 Taylor series

One of the major applications of infinite series is to use series to approximate functions that are difficult
to calculate. In this class, we mostly concentrate on series that approximate functions that you're already
familiar with, because then I can assign you problems that have definite answers. (However, the really use-
ful application is when you start with some other problem, such as an integral or a differential equation,
that you can't work out exactly using the usual operations but which can be expressed as an infinite se-
ries.)

Taylor polynomials

Recall that when a function f is differentiable at a number a, then we can approximate f near a with a
linear function that has both the same value and derivative as f does at a:

f(@)~ L(x) = f(a) + f'(a) (z — a);

here, L is a linear function, L(a) = f(a), and L'(a) = f'(a). This is actually only the beginning (well,
slightly after the beginning) of a whole sequence of approximations, each (typically) better than the one
before it:

f(x) = Po(x) = f(a);

f@) = Pi(z) = f(a) + f'(a) (x — a);

f(@) = Pa(a) = J(a) + '(0) (& — ) + 5 /(@) (& — )
7(2) ~ Py(a) = f(a) + (a) (2 — o) + 5 £"(a) (2 — ) + ¢ "(a) (w — )"

(The function that used to be called L is now called P;.) The general form of this is
"

(Recall that f () is the nth derivative of f .) Of course, f must be differentiable at a at least k times for
P, to make sense.

The function Py is the Taylor polynomial of f at a of order k. The Taylor polynomial of f at 0
of order k is also called the Maclaurin polynomial of f of order k. This terminology is standard (ex-
cept for some variations in the phrase ‘of order’ that you may see); however, the notation Py is not stan-
dard (and in principle it ought to mention f and a as well as k). Strictly speaking, Taylor polynomials are
polynomial functions rather than polynomials as such (which are simply algebraic expressions without any
variable picked out); otherwise, you'd have to mention the variable x as well.

Notice that a Taylor polynomial Py of order k is a polynomial function of degree at most k. (The de-
gree is normally exactly k, but it's smaller if f(*)(a) happens to be 0.) Also, the nth derivative of P}, at a
agrees with that of f, if n < k; that is,

P (a) = £(a)

if n < k. (On the other hand, if n > k, then P, (a) = 0, which is always the case for a higher-order deriva-
tive of a polynomial function when the order of the derivative is greater than the degree of the polynomi-
al.) The Taylor polynomial of f at a of order k is the only polynomial function of degree at most k whose
derivatives at a of order up to k agree with those of f.

Since polynomials are easy to work with, it's convenient to make approximations like these. But in
practice, it's also important to know how good the approximations are. Since these approximations are
based on the behaviour of f at a, we can really only expect them to be good when = = a. So one way to
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say that these approximations work is to say that Py(z) approaches f(z) (or more formally that the er-
ror of the approximation, |Px(z) — f(z)|, approaches 0) as z approaches a. This is true for k = 0 if f is
continuous at a, and for k > 0 if f is differentiable k times at a. But in fact, the higher-order Taylor poly-
nomials satisfy a stronger condition:

LB~ )

r—a ‘x _ a|k ’
which is called (one version of) Taylor's Theorem. As x approaches a, of course |z — a| approaches zero,
so dividing by |z — a| would tend to make a positive quantity larger. So Py is such a good approximation
to f that the error not only approaches zero but still approaches zero even after dividing by |z — a| several
times.

When investigating these questions, it's helpful to change perspective slightly. Write Ry, for f — Py,
the Taylor remainder of f at a of order k. Then the statement above, showing what a good approxima-
tion Py is, becomes

r—a ‘.’E _ (L|

This is good to know, but it may not really be enough; it tells us that moving x close to a will make the
approximation better, and very quickly; roughly, when zx is already close to a, then moving it twice as
close will make the approximation 2 times better, or you can make the approximation one decimal digit
more accurate by moving x only /10 times as close. However, this doesn't tell us how accurate the ap-
proximation was to start with, nor how close z has to be for this method of improving the approximation
to start working.

We can get better results if f is differentiable one more time (k + 1 times, not just k times) and near a
(not just at a). This strong version of Taylor's Theorem says that

(z—a) k (k1
Ry(z) = Tﬁzo(l —t)F D (g — at + xt) dt,

as long as f is continuously differentiable k + 1 times (at least) between a and x. (The integral here may
exist even if f is not continuously differentiable k + 1 times, but then the value of this integral might not
equal the remainder.) To be more explicit, here is the statement for the first few values of k:

F(@) = fla)+ (x — a)leof’(a at + wt) dt
= f(a) + f'(a)(z — a) + (z — a)zj;o(l —t)f"(a—at +at)dt

(x—a

3 1
= f(a)+ @)z~ a)+ 57 @) -0 + CTD N 4P at 4 oty

These statements may be proved by repeated application of integration by parts (and the Fundamental
Theorem of Calculus, which is why f**1) must not only exist but also be continuous). To be specific, you
can prove each statement using u = (1 — t)k/k! and v = (z — a)kf(k)(a — at + xt), integrating by parts,
simplifying, and (if applicable) applying the previous statement.

For purposes of approximation, it's useless to actually work out the integral that appears here; if you
knew the exact value of f*T1) at all of the points between a and z, then you could probably just evalu-
ate f at = directly. However, if there is a value M), such that you know that f(*+1) never has an absolute
value greater than M} at any point between a and x, then you can use M} to get a bound on the remain-
der:

My,

)< G

|z —al™".
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The reason for this is that we know that Ry (z) is exactly the integral that appeared in the full version of
the theorem, and we can bound its absolute value using the bound on its integrand:

k+1
_|E—a e _pnE e, _
| Ry ()] = u A= (@ at + at) dt

|z —a**t 1 k
< Tﬁio(l—t) |£*+) (@ — at + at)| dt

|a:—a|k'|r1 1 k |a:—a|k+1 M;, M, ka1
<E74  (C a-ofMdt = _ _alFL
=R L:o( ) M W kel Gro o

To be more specific:
|Ro(z)| = [f(z) = f(a)| < Mo |z —a

if | f'| is never greater than My between a and z,

M |z — al?

N |

[Bu(@)| = |£(@) = (f(@) + f(@)(x - )| <

if | "] is never greater than M; between a and z,

Ra(o)] = |0) = (100) 4 £ = )+ 37" @~ )| < g o~ o

if [f""] is never greater than My between a and x, etc. Note that this upper bound on the absolute value
of the remainder is basically the absolute value of the next term that you would add if you went one step
further, except that instead of using a derivative at a, you must use the largest derivative (in absolute val-
ue) anywhere between a and x.

7.2 Taylor series
We can extend from polynomials to power series and get the Taylor series of f at a:

o0

Pa) =~ f P @)~ a)"

n=0

(When a = 0, this is the Maclaurin series of f.) This power series exists as long as f is infinitely differ-
entiable at a, that is as long as f has derivatives of all orders at a. However, there are no theorems guar-
anteeing that this series converges, nor that it's anything like f(z) when it does converge (except that it
must converge to f(a) when z = a exactly). We say that f is analytic at a if this series converges to f(x)
at least on some interval around a. Any function built out of the usual operations® is analytic, as long

as it's infinitely differentiable, so everywhere that it is defined except where an absolute value or a root
(or a power with a fractional exponent) is applied to 0 or an inverse trigonometric sine, cosine, secant, or
cosecant is applied to £1. However, there are functions for which the Taylor series exists but fails to con-
verge (except when x = a exactly); the only examples that I know are defined themselves as series, such
as f(z) =Y 0", ¢~ V2" cos (2"z) (which is not a power series but still converges everywhere by the Root
Test). There are also functions for which the Taylor seriezs converges but not to f(z) (except when z = a
e forx #0,

exactly); an example of this (with a = 0) is f(x) = {0 forz =0

* addition, subtraction, multiplication, division, taking opposites, taking reciprocals, taking absolute
values, raising to the power of a constant, raising to a power when the base is positive, taking roots with a
constant index, taking roots with a positive radicand, taking logarithms, the six trigonometric operations,
and the six inverse trigonometric operations
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There are several famous Taylor series of analytic functions that you should know:

n=0
oo n
<_1) 2n
cosx = Z "
' )
— (2n)!
- (_1)” 2n+1
atanx = 5 195 for -1 <2 <1.
n=0 n+

(You can check that these are Taylor series for the claimed functions by checking the functions' deriva-
tives, and you can prove that these series converge for the claimed values of x using the usual convergence
tests, but it takes more work to prove that they converge to the claimed functions. Much of this is proved
in the textbook in Sections 9.7-9.10.)

The formula for 2* may seem particularly useless, and it mostly is when & is a whole number, but it
is valid for any real number k, such as k = —1 (for 1/z), k = 1/2 (for y/z), etc. This formula includes (fL),
the binomial coefficient of k with index n, which is defined by

(k> ko k(k=1)(k=2)--- (k= (n—1))

n! nn—1)(n—-2)---1 ’

that is, the binomial coefficient is a fraction whose numerator and denominator each consists of n factors,
with the denominator beginning at n to produce n! and with the numerator beginning at & to produce k2,

the falling power of k with index n (so in particular, n! = n). Just as 0! =1, so (]g) = % = 1; anoth-

er useful fact is that (_nl) = (=1)". (There is really a lot to be said about this stuff, which is part of the
branch of mathematics called combinatorics, but the only thing that you're responsible for is to calculate
n! and (fl) for specific values of k and n.)

When you use these formulas, you may need to substitute some other expression for x, and you may
need to start a sum at some other index. For example, if you want to evaluate

oo
l,n
>
n=3

then the important thing to notice is that the denominator is the same as the exponent (rather than the
factorial of the exponent, as in some of the formulas) and that almost every natural number appears as an
exponent (rather than only odd numbers or only even numbers, as in some of the formulas), which means
that it's the formula for In z that's relevant. To get the exponent in the right form, choose m so that n =

m + 1; that is, m = n — 1. You now have
m—+1

o~ T
Zm—i—l'

m=2
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To get the right base, you might choose y so that x = y — 1; however, to get the factor of (—1)" as well,
you should actually choose y so that = —(y — 1). That is, y = 1 — z, so you now have

o0 — _]_ m+1 o] 7 m—+1 [ele] _\m
Z< (ym+)1) :Z(ml)—f—l (yfl)mﬂzfzsni)ﬂy*l)wl'

m=2 m=2 m=2

Now you can match this against the formula for In z, using m in place of n and y in place of x, with an
extra minus sign out front and with the first two terms missing. Since these missing terms are

3

1
(_1) m+1 1 1 -1 2 12 3
§m+1(y ) 1(y )+2(y ) y 2y — -,

2 2

m=0

the original series equals —(lny —(=1/2y% + 2y — 3/2)) =—Iny—1/2y*+ 2y — 3/2 whenever 0 < y < 2.
Remembering that y = 1 — z, you can finally conclude that

e 1 3 1
Yl = m(l-2) - ;(1-a+201-2)->=-In(l-2)~ -2® —zfor ~1<z <L
Zn 2 2 2

Some of these formulas appear in slightly different forms in the textbook; one version may be more conve-
nient for a particular problem than another, but either version should suffice for all of the relevant prob-
lems.
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