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Welome to Calulus! Here are my supplemental notes for one-variable Calulus, giving alternative ways

to think about some things, pratial advie, and sometimes more theoretial detail.

This does not over everything that you need to know; you should also have the o�ial ourse text-

book, whih is the 3rd Edition of University Calulus: Early Transendentals by Hass et al published by

Addison�Wesley (Pearson). There are also some referenes in these notes to that textbook. Conversely,

there is some material in here that you don

′
t need to know, although I hope that it will be helpful; I ll

generally make a note of that when it happens.

For Calulus 2 (Math-1700), there is an additional set of notes on multivariable Calulus, whih I

will hand out later in that lass.
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1 Preliminaries

Before beginning this lass, you should be familiar with the basi algebrai properties of real numbers and

real-valued funtions of real numbers.

1.1 Numbers

By default, all of the numbers that we work with will be real numbers. (Most of Calulus applies just as

well to omplex numbers, but a omplete understanding of Calulus in even one omplex variable requires

some ideas from multivariable Calulus, whih these notes do not over.) In partiular, if a is a negative

number, then

n
√
a is unde�ned when n is an even integer and negative when n is an odd integer. More

generally, if a is a negative number, then ap is de�ned only if p is a rational number whose denominator in

lowest terms is odd; in this ase, ap is positive if the numerator of p is even and negative if the numerator

of p is odd. Note that (a2)
1/2

=
√
a2 = |a|, while a2·1/2 = a1 = a, whih is di�erent when a is negative, so

the rule that (ax)
y
= axy does not hold in general (although it does hold when a is a positive number).

Although 0x is unde�ned whenever x is negative (beause this amounts to dividing by zero), we need

to de�ne 00 = 1 in order to make some formulas work orretly. Although the textbook says that 00 is un-

de�ned, this ontradits some things that that book says about polynomials and power series. (Setion 9.7

of the o�ial textbook, beginning with the de�nition of power series on page 523, is the �rst plae where

this is important; see also the disussion of power series starting on page 46 in these notes.) It s possible

to take a more nuaned approah, where 0x is 1 when x is an integer -valued variable with the value 0
while 0x is unde�ned when x is a real -valued variable with the value 0; however, this makes the meaning

of 00 ambiguous without ontext, so for simpliity, I prefer to just say that 00 = 1. Nevertheless, this will
require some are when it omes to rules for evaluating limits.

When we use trigonometri operations, they will always apply to angle measures in radians. Atually,

it s best to think of these as operations on pure numbers, with the geometri appliation to angles as just

one use of them. So sinx and cosx are de�ned for any real number x, sin (x+ 2π) is always the same as

sinx, et. Also, for the inverse trigonometri funtions, I write asinx for the unique real number suh that

−π/2 ≤ asinx ≤ π/2 and sin (asinx) = x (if there is any suh number at all, whih there will be if and

only if −1 ≤ x ≤ 1); this number is also variously written arcsinx, Sin−1 x, or (as in the textbook) sin−1 x.
Note that I also use −π/2 ≤ acscx ≤ π/2; some Calulus textbooks do this di�erently, but I am agreeing

with our o�ial textbook in this respet.

The main di�erene between my approah to Calulus and the textbook s is that I make more use

of di�erentials. Calulus was originally developed using di�erentials, and many alulations are easier to

do this way. Furthermore, di�erentials are often used in appliations, espeially (but not only) to phys-

is. They fell out of fashion with mathematiians towards the end of the 19th entury, when Calulus was

�rst put on a rigorous logial foundation, beause this foundation did not inlude di�erentials. However, a

rigorous logial development of di�erentials as well had been ahieved by the early 20th entury, so there

is no longer any reason to avoid them. You an do almost everything with the textbook s methods if you

want, but I enourage you to try using di�erentials. (This will be espeially fruitful if you go on to take

multivariable Calulus, where di�erentials are even more onvenient.)

A related (but distint) issue is the question of in�nitely small (but nonzero) numbers. We say that a

number is in�nitely small, or in�nitesimal , if its absolute value is less than 1, less than 1/2, less than 1/3,
et. In the real number system as we now understand it, the only in�nitely small number is 0; however, in
the early days of Calulus, people reasoned in terms of nonzero in�nitesimal numbers (and their reipro-

als, whih are in�nitely large numbers) quite often. I will disuss this oasionally, beause they an be

useful for intuitive understanding, but this is entirely optional; I ll make no attempt at a omplete or rig-

orous disussion of suh numbers, although I ll try to make sure that everything that I say about them is

at least true. (In�nitesimal numbers were the last onept to be made fully rigorous, but even so, this was

done in 1960, probably well before any of us was born.)
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1.2 Sets

Geometrially, a set of real numbers is a region within the number line; for eah number c, you should be

able to say (in priniple) whether c is in the set or not. That is, if c is a number and A is a set, then c ∈ A
is a statement that may be true or false. When it is true, we say that c is an element and member of A,
that c belongs to A, and that A owns c. Although one an talk about sets whose elements are anything at

all (even other sets) rather than just real numbers, the default meaning of `set' in this lass is a set of real

numbers. Note that both the entire real line (written R, R, or (−∞,∞)), whih owns every real number,

and the empty set (written ∅ or {}), whih owns nothing at all, ount as the extreme examples of sets of

real numbers.

In general, you an de�ne a set by piking a variable (say x) to stand for an arbitrary real number

and writing down a statement about that number (using that variable) so that x belongs to the set if and

only if the statement is true. For example, you might de�ne a set A by saying that, for eah real num-

ber x, x ∈ A if and only if x < 2. (Note that `if and only if' goes both ways: if x ∈ A, then x < 2; and if

x < 2, then x ∈ A.) You an write this as A = {x | x < 2}, or {x ∈ R | x < 2} to emphasize that it s a

set of real numbers. Or if you don t want to give the set a name like A, then you an refer to the set di-

retly as {x | x < 2}. Then given any real number c, c ∈ {x | x < 2} if and only if c < 2. For example,

1 ∈ {x | x < 2}, beause 1 < 2; but 3 /∈ {x | x < 2}, beause 3 ≮ 2 (where the slashes indiate that some-

thing is not true).

Besides this, we will often have to deal with intervals, whih are partiular sets of real numbers, so

there is a speial notation for them. If a and b are real numbers with a < b, then [a, b], [a, b), (a, b], and
(a, b) are all sets (the intervals from a to b, or with a and b as endpoints), onsisting of all of the numbers

stritly between a and b, as well as possibly the endpoints a and b themselves; an endpoint belongs to the

interval if the braket on that side is square but not if it is round. We an also use −∞ in plae of a or ∞
in plae of b (or both), to indiate that the interval ontinues forever in that diretion; but beause −∞
and ∞ are not real numbers, the brakets next to them must always be round. In other words:

[a, b] = {x | a ≤ x ≤ b}; [a, b) = {x | a ≤ x < b}; [a,∞) = {x | x ≥ a};
(a, b] = {x | a < x ≤ b}; (a, b) = {x | a < x < b}; (a,∞) = {x | x > a};

(−∞, b] = {x | x ≤ b}; (−∞, b) = {x | x < b}; (−∞,∞) = R.

We all [a, b], [a,∞), (−∞, b], and (−∞,∞) losed intervals; they inlude all of the endpoints that they

an. Conversely, we all (a, b), (a,∞), (−∞, b), and (−∞,∞) open intervals; they inlude none of their

endpoints. (Notie that [a, b) and (a, b] are neither open nor losed, while (−∞,∞) is both.) Also, the in-

tervals that don t involve any kind of in�nity are alled bounded intervals. In partiular, the losed bound-

ed intervals of the form [a, b] are alled ompat intervals. These will all be useful notions from time to

time.

Although I said above that a < b for the endpoints of an interval, we also allow a = b for ompat in-

tervals; however, [a, a] is more ommonly written simply {a}; that is, urly brakets with the single ele-

ment a listed within them. (If there are more elements, then you an list these separated by ommas, but

then the set will no longer be an interval.) If you re talking about a ompat interval [a, b] and want to

ensure that a < b, then you an speak of a nontrivial ompat interval. This is usually just a tehniality,

however.

1.3 Funtions

Another di�erene between these notes and the textbook is that I will never be sloppy with funtion nota-

tion.

In an expression suh as

y = f(x),

the variables x and y stand for real numbers, while the variable f stands for a funtion. (Usually this vari-

able is atually a onstant, beause f always refers to the same funtion throughout the problem, although

there an also be situations where the funtion itself is allowed to vary.) A funtion is not a number but
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rather a proess for turning one number into another. When speaking of spei� numbers, this is usual-

ly not a problem; for example, f(2) = 4 means that the funtion f is a proess that (among other things)

turns the number 2 into the number 4.
The statement that f(x) = x2

is more ambiguous; in a ontext where the variable x already appears,

this means that the funtion f is a proess that (among other things) turns the number x (whatever num-

ber that is) into the number x2
. But in a ontext where x does not already have a meaning, this state-

ment usually means that the funtion f is a proess that turns every real number into its square, whih is

a omplete desription of the funtion. In this ase, it is better to say something like

f(x) = x2
for all x,

and I will usually say something like this.

Another way to ompletely desribe this funtion is to write

f = (x 7→ x2).

This is analogous to de�ning a set S as S = {x | x > 2}; in eah ase, you introdue a new dummy variable

and then you either give an expression (to de�ne a funtion) or else you give an equation, inequality, or

other statement (to de�ne a set), in eah ase using that dummy variable. You an even do this without

giving the funtion (or set) a name, by (for example) just referring to the funtion (x 7→ x2) or the set
{x | x > 2}; this is alled anonymous funtion notation. Although the textbook does this with sets, it

never does this with funtions; so I won t do it muh either. It an be very handy, however.

The real problem is when the same symbol is used both to refer to a funtion and to its output value,

as in

A = A(x),

whih you might see (for example) in a problem in whih the area of some shape depends on something

else. I will never do this! Either I will use A to refer to the area itself, or I will use A to refer to the fun-

tion that indiates how this area depends on x (whatever that may be in this situation), but I will not use

the same symbol for both of these. If I need to refer to both of these, then I will use two di�erent sym-

bols. Most of the time, however, it s enough to have a symbol for the area itself and to leave the funtion

unnamed. (The evaluation notation desribed on page 6 an help with this.)

When we over derivatives later on, you will learn various symbols used for this onept; and when

y = f(x), then I will also write

dy

dx
= f ′(x).

(What this means is explained on page 14.) The textbook will sometimes write y′ or df/dx in this situa-

tion, but I never will, and this is important to ensure that the ordinary rules of algebra ontinue to apply

to suh expressions. (For example, you an multiply both sides of the equation above by dx to get dy =
f ′(x) dx, whih would be di�ult to do orretly using the wrong symbols.) I will not ount it against

you if you are as sloppy as the textbook about this, beause I don t think that it s fair to require you to

do more than the textbook writers do; however, if you get onfused by your notation and make a mistake,

then that will ount against you! So I enourage you to use preise notation.

1.4 Variables

In Calulus, we study variable quantities, that is quantities whose values may vary (or hange).

In Algebra, we often use the word `variable' to refer to any quantity whose value we don t know, even

if this value is �xed and never hanges throughout the problem. In fat, the standard Algebra problem,

solving an equation suh as 2x+ 3 = 5, involves �guring out the value of the variable; so it had only one

value all along, and we just had to �gure out what it was. So if x is a variable in an Algebra problem, and

at some point we deide that the value of x is 1, then this may well mean that x is 1 throughout the entire

problem. (That s not always the ase in Algebra, but it often is.)
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In Calulus, we take the word `variable' more seriously. If x is a variable in a Calulus problem, then

x might be 1 at some point, but it will probably be 6 at some other point in the problem. (And more of-

ten than not, it will take all of the values in between 1 and 6 along the way, suh as 1 1
2 , π, and 5.789.)

Furthermore, if x and y are two variables that appear in the same problem, then the value of y will usual-

ly hange as the value of x hanges. Calulus is primarily about exatly this sort of thing: how one quan-

tity hanges as another quantity hanges.

In the simplest ases, it turns out that y is a funtion of x; that is, there is a �xed funtion f suh

that y = f(x) remains true as x and y vary. Calulus textbooks generally try to �t everything into this

mould, but it doesn t always ome out like this naturally. Often, you know that both x and y are hang-

ing, but it s not obvious that the value of x at some point is enough information to �gure out the value

of y at that point; yet when you write y = f(x), you re assuming that it is enough information.

Nearly all of the time, however, we an assume that there is some variable t, alled the independent

variable, suh that every other variable in the problem is a funtion of t. That is, if x and y appear in the

problem, then there are �xed funtions g and h suh that x = g(t) and y = h(t) throughout the problem.

(Then x and y are alled dependent variables, sine their values depend on the values of t, through the

funtions g and h.) If it also happens that y = f(x) throughout the problem, then this means that h is the

omposite funtion f ◦ g; but if that doesn t happen, then at least we still have g and h.
However, this variable t might not show up diretly! Calulus books will usually tell you (espeially in

word problems) that it s neessary to pik an independent variable from among the variables that appear

in the problem, but really it s enough to informally visualize the range of variation in the problem, and

you an treat all of the variables on an equal footing. All the same, for the sake of formal de�nitions, I

will assume that there is an independent variable t and that every other variable is a funtion of it, even

though in pratie we don t have to identify it. (Of ourse, you don t have to all the independent variable

`t', but I usually will, just to have a onsistent name.)

If we re not going to refer diretly to t, then we re not going to refer diretly to g and h either, only to

the quantities x and y; so we need some way to refer to the values of these quantities without referring to

the funtions that determine them. Here is how we do it formally:

If u = f(t), then u|t=c = f(c).

(This is alled evaluation notation.) More generally, if P is some statement that is only true one, then

P implies the statement t = c for some value of c, so we an make sense of u|P . Even if P is a statement

that might not only be true one, as long as every possible value of u|P is the same, then we an still make

sense of u|P . Finally, even if there are di�erent possible values of u|P , then the value of u|P still varies,

but at least it doesn t vary as muh as u itself, sine there are now fewer possibilities.

This all sounds very abstrat (beause it is), but the onrete appliation is straightforward; here are

some examples:

x|x=5 = 5,

(2x+ 3)|x=4 = 2(4) + 3 = 11,

(2x+ 3y)|x=4,
y=5

= 2(4) + 3(5) = 23.

Taking the last of these for example, there is no need to think about what t is when x = 4 and y = 5, and
indeed without onsidering how x and y depend on this unspei�ed independent variable t, the value of t
is impossible to know. Nevertheless, we know that no matter what t may be, if x = 4 and y = 5 at that

value of t, then u = 2x+ 3y is de�nitely 2(4) + 3(5) = 23 at that same value of t, and that is enough. So

all that you have to do in pratie is to plug in the given values and perform the given alulation.

Sometimes (generally only in the middle of a problem or in something theoretial) you an t work out

the value ompletely; for example,

(2x+ 3y)|x=4 = 2(4) + 3(y|x=4) = 8 + 3y|x=4.

If we don t know anything more about the relationship between x and y, then we don t know the value

of y when x = 4, so this is all that we an say in this example, but at least we were able to work out part

of it.
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1.5 Completeness of the real line

In this ourse, we work with the real numbers, whih are supposed to orrespond to points on a number

line. Ultimately, all of the properties of real numbers derive from intuitive geometri properties of points

on a line. For example, the arithmeti operations of addition, subtration, multipliation, and division an

be de�ned in terms of hanges of position and sale on the number line. The order relation between real

numbers (< and >) also derives from relative position on a line. (You have to speify the numerial values

of at least two points, suh as 0 and 1, in order to make a geometri line into a number line, but one you

have those two points, then everything else follows.)

The most advaned of the fundamental properties of the number line is its ompleteness. There are

many ways to express ompleteness, but my favourite is this:

If you pik out two nonempty regions of the number line, one on the left alled L and one on the

right alled U , whih don t overlap but otherwise annot be extended further, then there is a sin-

gle point between them, alled cut (L,U), the ut between L and U .

oo L

cut (L,U)

U //•

We an make this logially preise (in terms of the order relation on real numbers): Suppose that L and U
are two sets of real numbers (making preise what regions of the number line are), with these properties:

• There is some r ∈ L and some s ∈ U (whih is what it means for L and U to be nonempty);

• If r ∈ L and s ∈ U , then r < s (whih is what it means for L to be on the left and U on the right

without overlapping);

• If r < s, then r ∈ L or s ∈ U (whih is what it means to say that L and U annot be extended fur-

ther).

(Note that `or' in math, as here, normally inludes the possibility of both.) Then there exists a real num-

ber cut (L,U) with this property:

• If r ∈ L and s ∈ U , then r ≤ cut (L,U) ≤ s (whih is what it means for cut (L,U) to be between L
and U).

A ouple more important properties follow from what was said above:

• The number cut (L,U) is the only real number between L and U ;
• If r < cut (L,U) < s, then r ∈ L and s ∈ U .
The point of all this is to be able to prove that a real number exists. For example, in order to prove

rigorously that every real number c has a ube root

3
√
c (and has anybody ever showed you why this is

true or did you just take it on faith?), you �rst de�ne L as {x | x3 < c} and U as {x | x3 > c}, hek that

L and U have the neessary properties listed above (whih takes a bit of work with algebra), onlude that

cut (L,U) exists with the properties listed above, and hek (using those properties) that cut (L,U)
3
= c

(whih takes a lot more work with algebra). Thus, this ut is the ube root

3
√
c.

This method of proving that a real number exists is also pratial, beause it shows us how to ap-

proximate its value as losely as we like. For example, to approximate

3
√
2 to 4 deimal plaes, you look

at some nearby possibilities, suh as 1.0001, 1.0002, 1.0003, . . . , 1.9997, 1.9998, 1.9999. Somewhere in this

list are two numbers right next to eah other, one of whih has a ube less than 2 (so it s in L) and one

of whih has a ube greater than 2 (so it s in U). Then we approximate

3
√
2 to 4 deimal plaes by say-

ing that it s in between these two numbers. (As it happens, these two numbers are 1.2599 and 1.2600; al-
so, 1.259953 > 2, so 3

√
2 rounds to 1.2599.) There are more e�ient ways to alulate ube roots (suh as

Newton s Method, desribed on page 24), but this proof that they exist at least gives one way to alulate

them, to start with.

I will only have to refer to this property of real numbers oasionally, when explaining why some num-

ber exists. The main point is that you know that a number exists if you an approximate it as losely as

you like, the way that I approximated

3
√
2 to 4 deimal plaes. Cheking all of the detailed requirements is

not usually really neessary to understand what s going on.
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2 Limits and ontinuity

There are four main operations onsidered in Calulus: limits, derivatives (or di�erentials), integrals (or

antidi�erentials), and sums of in�nite series. (The last of these is only overed in Calulus 2.) Here we will

look at the �rst one: limits. These are also losely related to the onept of ontinuity, whih is atually

the easiest onept to de�ne.

2.1 Continuity

In Calulus, we not only study variable quantities; we study quantities that are ontinuously varying. This

implies in partiular that a quantity y that varies from 1 to 6 will pass through 1 1
2 , π, and 5.789, and ev-

erything else in between.

In real life, we an never measure or �x the value of a suh a quantity y exatly, down to the last de-

imal plae; after all, there are in�nitely many deimal plaes, but we an only do a �nite amount of work.

So, it is key to the study of real numbers that we an approximate them to any �nite number of deimal

plaes (among other ways). That is what the stu� about uts on page 6 aomplishes.

Also in Calulus, we study how one quantity y varies along with another quantity x. The most straight-

forward way in whih this an happen is when y is a funtion of x; if f is the funtion, then y = f(x). But
in pratie, we only know x and y approximately, so if we only use an approximate value of x, then f(x)
should still be an approximate value of y. For example, suppose that f(x) = x2

for all x; if you know that

x is approximately 2, then you know that y = f(x) is approximately 22 = 4.
This doesn t work with every funtion! For example, suppose that g is the pieewise-de�ned funtion

g(x) =

ß

x+ 1 for x < 2,
x+ 3 for x ≥ 2;

if you only know that x is approximately 2, then you really don t know if g(x) is approximately 2 + 1 = 3
or approximately 2 + 3 = 5. Of ourse, if you know that x is exatly 2, then you know that g(x) is 2 + 3 =
5 (exatly); but it s no good if you only know x approximately.

In these examples, we say that g has a disontinuity at 2, while f is ontinuous at 2. (In fat, f is

ontinuous everywhere, while g is ontinuous everywhere exept at 2.) So the idea is this:

A funtion f is ontinuous at a real number c if, whenever x ≈ c (meaning that x is approxi-

mately equal to c), f(x) ≈ f(c).

So if you only know that x ≈ c, then that s enough information to know f(x) approximately (spei�ally,

that f(x) ≈ f(c)).
Atually, we should take are about where f is de�ned. Sometimes Calulus textbooks say that f has

a disontinuity at c if f is unde�ned at c (that is if f(c) does not exist), and sometimes they don t; but in

any ase, f is not ontinuous there: f must be de�ned �rst in order to be ontinuous. On the other hand,

if f is unde�ned at x, then we don t hold that against f ; for example, we want to say that f(x) =
√
x is

ontinuous at 0, even though f(x) does not exist (as a real number) whenever x < 0. So a more areful

de�nition is this:

A funtion f is ontinuous at a real number c if f(c) exists and, whenever x ≈ c and f(x) ex-
ists, f(x) ≈ f(c).

This is still not a ompletely rigorous de�nition, beause it doesn t explain how lose we need to be

to say that one quantity is approximately equal to another. (Basially, the answer is this: as lose as you

need, and as lose as you want.) But I will save that for a bit later. Already, this basi idea should be

enough to allow you to judge ontinuity of a funtion from its graph.

To judge ontinuity of a funtion from a formula, it s onvenient to know that any funtion is ontinu-

ous (wherever it is de�ned) if it has a formula that uses only these operations: addition, subtration, mul-

tipliation, division, absolute values, opposites, reiproals, raising to powers when the exponent is on-

stant or the base is always positive, extrating roots when the index is onstant or the radiand is always
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positive, logarithms, trigonometri funtions, and inverse trigonometri funtions. These are pretty muh

all of the funtions that you ever deal with!

So, the exeptions in pratie are muh rarer: exponentiation where the exponent varies and the base

an be zero or negative, roots where the index varies and the radiand an be zero or negative, and pieewise-

de�ned funtions. Of these, only pieewise-de�ned funtions are likely to ome up. These funtions an be

ontinuous, but only if the values agree on both sides whenever two piees join. So for example, while

g(x) =

ß

x+ 1 for x < 2,
x+ 3 for x ≥ 2

has a disontinuity at x = 2,

h(x) =

ß

x+ 1 for x < 2,
5− x for x ≥ 2

is ontinuous at x = 2 (and so everywhere), beause 2 + 1 = 5− 2. The preise theorem is that, if f and g
are funtions that are eah ontinuous at a number c, and if f(c) = g(c), then the pieewise-de�ned fun-

tion h de�ned by

h(x) =

ß

f(x) for x < c,
g(x) for x ≥ c

(or by f(x) for x ≤ c and g(x) for x > c, beause this gives the same result), then h is also ontinuous

at c.
Returning to the meaning of ontinuity, how lose of an approximation is lose enough? The key to

the answer is that a real number may be approximated as preisely as you wish, as long as you put enough

work into it. So for f to be ontinuous at c, we should be able to demand that f(x) and f(c) be as lose
together as we like (as long as we still allow for a positive distane between them). But in order to ahieve

that result, it s fair in turn to demand that x be as lose to c as neessary (again as long as we still allow

the distane to be positive). The distane between two numbers is given by subtrating and taking the

absolute value, so we need to be able to ensure that |f(x)− f(c)| is as small as we want (but positive) by

making |x− c| as small as we need (but positive).

The traditional symbols for these small but positive distanes are the Greek letters `ǫ' (lowerase Ep-
silon) and `δ' (lowerase Delta). For this reason, this is sometimes alled the ǫ-δ (or epsilon-delta) de�ni-

tion; this general method of designing de�nitions and proving theorems is also alled epsilontis. So here is

the rigorous de�nition:

A funtion f is ontinuous at a real number c if f(c) exists and, for eah positive number ǫ (no
matter how small), there is some positive number δ (possibly quite small), suh that whenever

|x− c| < δ and f(x) exists, |f(x)− f(c)| < ǫ.

This is fairly ompliated, but you an view it as a game, involving a funtion f and a number c suh that

f(c) exists.
• I hallenge you with a positive number ǫ.
• You respond with a positive number δ.
• I reply with a value of x suh that |x− c| < δ and f(x) exists.
• You win if |f(x)− f(c)| < ǫ.

If you an win this game, no matter what hoies I make, then f is ontinuous at c. On the other hand, if

I an win no matter what hoies you make, then f has a disontinuity at c.
To see how this matters in pratie, suppose again that f(x) = x2

for all x and you re told that x ≈ 2;
you want to judge how preisely you know that x2 ≈ 4. To be spei�, suppose that you want to be guar-

anteed that x2
rounds to 4 to at least 3 digits after the deimal point, in other words that |x2 − 4| < 1

2 ×
10−3

. (That is, ǫ is 1
2 × 10−3 = 0.0005.) This means that you want x2

to be between 4− 1
2 × 10−3 = 3.9995

and 4 + 1
2 × 10−3 = 4.0005. Taking square roots (and assuming that x is positive, sine it s near 2), this

means that x is between

√
3.9995 ≈ 1.999 87 and

√
4.0005 ≈ 2.000 12. To be really sure that this is true,

round up the lower number and round down the upper number: x should be between 1.9999 and 2.0001.
Subtrating these from 2, this means that |x− 2| < 0.0001. (That is, δ is 0.0001; if the upper and lower
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estimates give you di�erent values of δ, then use the smaller one to be safe.) So if you an verify that x is

at least that lose to 2, then you an be on�dent that x2
is at least as lose to 4 as you need. (That f is

ontinuous at 2 means that no matter how preisely you need to know that x2 ≈ 4, you ll be able to per-

form a alulation like this, at least in priniple, to �nd out how preisely you need to require that x ≈ 2.)
Here are a few more de�nitions to round out the topi; in all of these de�nitions, f is a funtion, c is

a number, and S is a set (of numbers).

• f is left-ontinuous at c (or ontinuous at c from the left or from below) if the funtion

(x 7→ f(x) for x ≤ c) (that is the same as f on the interval (−∞, c] but unde�ned on the interval

(c,∞)) is ontinuous at c.
• f is right-ontinuous at c (or ontinuous at c from the right or from above) if the funtion

(x 7→ f(x) for x ≥ c) is ontinuous at c.
• f is ontinuous on S if f is ontinuous at c whenever c ∈ S (so in partiular, f must be de�ned

on S).
• f is just plain ontinuous if f is ontinuous on its domain (so ontinuous at every number where it

is de�ned).

Left and right ontinuity will not ome up muh, although sometimes it is useful to know that f is ontin-

uous at c if and only if it is both left-ontinuous and right-ontinuous there.

However, the other two de�nitions above will be used often. It will be espeially ommon to say that

a funtion is ontinuous on a ompat interval [a, b]; this means that we don t are whether it s de�ned at

numbers less than a or greater than b and (even if it is) whether it s ontinuous there, but we are about

what is happening between (and at) a and b. (Even at a and b, we usually only are that the funtion is

right-ontinuous at a and left-ontinuous at b, but it would take more work to be so preise, so we usually

don t bother to larify this.)

2.2 Diretions

A diretion in some variable desribes not only whether the variable is inreasing or dereasing (that is

its literal diretion on a number line) but also if there is a limiting value that it approahes but does not

reah. The basi diretions that we study in this ourse take the following four forms, where x may be any

variable and c may be any onstant:

• x → ∞: as x inreases without bound (or as x approahes positive in�nity);

• x → −∞: as x dereases without bound (or as x approahes negative in�nity);

• x → c−: as x inreases towards c (or as x approahes c from the left, or from below);

• x → c+: as x dereases towards c (or as x approahes c from the right, or from above).

Any two or more of these diretions may be ombined, but the only type of ombined diretion in the

textbook is this:

• x → c: as x approahes c (from either diretion, or even both at one, jumping bak and forth);

whih is the ombination of x → c− and x → c+. That said, other ombinations are also sometimes stud-

ied, espeially the ombination of x → ∞ and x → −∞, whih is written x → ±∞: as x approahes pos-

itive or negative in�nity. (You an also onsider fanier diretions, for example as x inreases without

bound while taking only integer values, whih is relevant to the material in Setion 9.1 of the textbook and

whih I will get to in Chapter 6. For now, however, I ll stik to ombinations of the types of diretions rel-

evant to Chapter 2.)

It s sometimes onvenient to think of ∞ and −∞ as numbers like the real number c, only numbers of

an in�nite magnitude. Similarly, it s sometimes onvenient to think of c+ and c− as numbers that are in-

�nitely lose to (but distint from) the real number c. Then the meanings of the diretions are as follows:

• x → ∞: what happens when x is positive and in�nite?

• x → −∞: what happens when x is negative and in�nite?

• x → c−: what happens when x is in�nitely lose to but less than c?
• x → c+: what happens when x is in�nitely lose to but greater than c?
• x → c: what happens when x is in�nitely lose to but distint from c?
• x → ±∞: what happens when the absolute value of x is in�nite?
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This an be made rigorous, by extending the real number system to the hyperreal number system, al-

though I will not be doing that. But in any ase, it an be useful for intuition.

Ultimately, the important thing about a diretion is what happens eventually as you move in that

diretion. So for example, as x → ∞, it is eventually true that x > 0, that x > 1, that x > 2, and so on.

Besides that . . . well, that s it, really. If any statement P is true as x → ∞, then it s true beause there

is some �xed number M (whih you may assume is a whole number, although you don t have to do this)

suh that P is true whenever x > M . For example, x2 > 4 as x → ∞, beause x2 > 4 whenever x > 2.
(It s also true that x2 > 4 whenever x < −2, but that s irrelevant.)

Similarly, P is true (eventually) as x → −∞ if there is some number M suh that P is true whenev-

er x < −M . Also, P is true in the ombined diretion x → ±∞ if it is true both as x → ∞ and as x →
−∞, in other words if there is some number M suh that P is true whenever |x| > M . Next, P is true as

x → c+ if there is some positive number δ (whih you may assume is 1/M for some natural number M , al-

though you don t have to do this) suh that P is true whenever c < x < c+ δ; and P is true as x → c− if

there is some positive number δ suh that P is true whenever c− δ < x < c. Finally, P is true as x → c if
it is true both as x → c+ and as x → c−, in other words if there is some positive number δ suh that P is

true whenever c− δ < x < c+ δ but x 6= c (or equivalently whenever 0 < |x− c| < δ).
For example, x− 2 6= 0 as x → 2, preisely beause of the x 6= 2 bit; the point of x → 2 is that x is

lose to 2 but still distint from 2. You an t say that x− 2 > 0 as x → 2, but at least (x− 2)
2
> 0; also,

x− 2 > 0 as x → 2+. This sort of analysis allows you to simplify things as you work in partiular dire-

tions.

2.3 Limits

If D is any diretion and u is any variable quantity, then we indiate the value to whih u approahes as

hange ours in the indiated diretion as

lim
D

u

in a diplayed equation or as limD u in running text. (The textbook likes to write u as f(x), and this is

ertainly onvenient when it omes to the formal de�nition, but in pratie you ll start with an expression

involving the variable x, and it s not neessary to think of this as given by a funtion.) We will examine

the ase when u approahes a real value L, as well as the ase when u inreases without bound or dereas-

es without bound. In the �rst ase, we say that the limit onverges; in the seond ase, we say that the

limit diverges to (positive or negative) in�nity. Other types of behaviour are also possible, whih are also

kinds of divergene, but I won t try to analyse those now.

A limit as x → c is one of the three kinds of results that we are onsidering if and only if the limits as

x → c+ and as x → c− are both this same result. So in total, there are �fteen kinds of limits that we will

onsider, for the �ve kinds of diretions (four basi and one ombined) and the three kinds of results:

lim
x→∞

u = L; lim
x→∞

u = ∞; lim
x→∞

u = −∞;

lim
x→−∞

u = L; lim
x→−∞

u = ∞; lim
x→−∞

u = −∞;

lim
x→c−

u = L; lim
x→c−

u = ∞; lim
x→c−

u = −∞;

lim
x→c+

u = L; lim
x→c+

u = ∞; lim
x→c+

u = −∞;

lim
x→c

u = L; lim
x→c

u = ∞; lim
x→c

u = −∞.

To see how to read these aloud, I ll onsider the last one as an example; this says that the limit, as x ap-

proahes c, of u is negative in�nity.

If you think of ∞ and −∞ as numbers of an in�nite magnitude, then the meanings of the results are

as follows:

• limD u = ∞: u is positive and in�nite;

• limD u = −∞: u is negative and in�nite;

• limD u = L: u is in�nitely lose to L (whih inludes being equal to L as a speial ase).
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This an be made into a rigorous de�nition of limits using the hyperreal number system, but I will only

use it for intuition.

There are some alternative notations for limits that are worth knowing. First of all, instead of writing

limD u, you an also write u|D, analogous to evaluation notation (page 5). That is, u|x=c means whatever

u equals when x equals c, while u|x→c means whatever u approahes (or equals) when x approahes (but is

still distint from) c.
The point of a ontinuous funtion is that these are the same; that is, f is ontinuous at c if and only

if f(x)|x=c and f(x)|x→c both exist and are equal. Of ourse, instead of writing f(x)|x=c, you ould just

write f(c); similarly, instead of writing f(x)|x→c, there is yet another notation for this:

f(c±) = f(x)|x→c = lim
x→c

f(x).

You an read this as `f of c plus or minus'; the idea behind `plus or minus' here is the same as in the En-

glish phrase `more or less', meaning `approximately', beause we re looking at values of f near c rather
than at c. Then f is ontinuous at c if and only if f(c±) = f(c) (inluding that these both exist).

The analogous notations for the other types of diretions are f(c−), f(c+), f(∞), and f(−∞). Sine
things like c+ and ∞ aren t real numbers, there should be no onfusion between this funtion-limit no-

tation and the usual funtion-evaluation notation f(c). Sine all of these alternative notations for limits

aren t in the textbook, I won t use them very muh, but they are good to know; they are short and handy,

and you may see them elsewhere.

2.4 De�ning limits

The simplest type of limit to de�ne is limx→c f(x). Note that this just depends on the funtion f and the

real number c, whih is espeially lear using the notation f(c±) in the previous paragraph above. If f is

ontinuous at c, then this is supposed to be f(c). But what if f is unde�ned or disontinuous at c?
Given a real number L, let fc 7→L be the pieewise-de�ned funtion given by

fc 7→L(x) =
{

f(x) for x 6= c,
L for x = c.

That is, fc 7→L is almost the same funtion as f , exept that fc 7→L(c) = L, regardless of what f(c) is (or
even whether f(c) exists in the �rst plae). Now here is the de�nition of the limit:

If there is a unique real number L suh that fc 7→L is ontinuous at c, then L is f(c±).

Note that the limit is unde�ned if either there is no L that makes fc 7→L ontinuous or if there is more than

one L that makes it ontinuous. But that seond possibility is very rare; it only happens if f is unde�ned

approahing c, that is if f is not de�ned anywhere near c (in whih ase fc 7→L is ontinuous at c no matter

what L is, beause there is nothing nearby to ompare to).

What if the limit is some kind of in�nity? We an t talk about fc 7→∞, beause then fc 7→∞(c) would
have to be ∞, whih is not a real number. However, if f(x) is inreasing without bound, then 1/f(x)
should be approahing 0. This almost allows us to de�ne when the limit is ∞; the only problem is that

1/f(x) still approahes 0 even if f(x) dereases without bound as well. Still we an say that

lim
x→c

f(x) = ±∞ if lim
x→c

Å

1

f(x)

ã

= 0.

To �nish the de�nitions that we want, we need to speify the sign of f(x) as well:

lim
x→c

f(x) = ∞ if lim
x→c

Å

1

f(x)

ã

= 0 and f(x) > 0 as x → c;

lim
x→c

f(x) = −∞ if lim
x→c

Å

1

f(x)

ã

= 0 and f(x) < 0 as x → c.
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You an also de�ne things like limx→c u = L−
and limx→c u = L+

by similar restritions, but we won t be

doing that.

Finally, for the general de�ntion of limD u, where D is any diretion and u is any expression, sup-

pose (like I did bak on the top of page 5) that x and u are both funtions of some independent variable t,
where x is the variable that appears in the diretion D. To be preise, suppose that u = f(t) and x = g(t).
If the diretion D onsists of some additional ondition on the variable x, then assume that this ondition

holds for every value of the funtion g. (So for x → c−, suppose that g(t) < c always, and for x → c+, sup-
pose that g(t) > c always; even for x → c, still suppose that g(t) 6= c always.) Then if the limit of f(t) has
the same value (a real number L, ∞, or −∞) whenever the limit of g(t) is the value given by the dire-

tion D (a real number c, ∞, or −∞), then that value for the limit of u = f(t) is the limit limD u.
(This de�nition overs muh more general ases than the textbook s; for example, limx→0 (±x) = 0,

beause whenever f(t) = ±g(t) and lim g(t) = 0, then lim f(t) = 0. Intuitively, this should be obvious,

sine ±x ≈ 0 whenever x ≈ 0, no matter whether it s +x or −x. But the textbook an t make sense of

this, tehnially, sine ±x is not a funtion of x. The formal de�nition of the Riemann integral is anoth-

er ase where the textbook tehnially annot write it down but I an.)

The textbook de�nes limits diretly using epsilontis (whih is very similar to the epsilonti de�nition

of ontinuity but slightly more ompliated), then de�nes ontinuity using limits; I have de�ned ontinuity

using epsilontis and de�ned limits using ontinuity. Our de�nitions ome in di�erent orders, but they are

equivalent (at least in the ases where the book gives a de�ntion at all). In any ase, the most important

method of alulating limits is this:

If f is ontinuous at c, then lim
x→c

f(x) = f(c).

This fat makes most limits trivial to alulate; but it s the exeptions where all of the interesting stu�

happens!

For example, let g be the pieewise-de�ned funtion from page 7:

g(x) =

ß

x+ 1 for x < 2,
x+ 3 for x ≥ 2;

onsider the limits of g(x) in various diretions. Sine g is ontinuous everywhere exept at 2, it follows
that lim

x→c
g(x) is simply g(c) for every real number c other than 2. There are still a few interesting lim-

its of g(x), however: the limits as x → 2+, as x → 2−, as x → ∞, and as x → −∞. The �rst of these is

g(2) = 5, basially beause g(x) uses the same formula when x = 2 as when x > 2; formally, it s beause

x+ 3 for x ≥ 2 is ontinuous as a funtion of x. (In other words, g is right-ontinuous at 2.) The next

one, the limit as x → 2−, is 3, even though g(2) 6= 3 (so g is not left-ontinuous at 2). But the reason for

this limit is essentially the same as the reason for the previous limit; it is that x+ 1 for x ≤ 2 is ontinu-

ous as a funtion of x. Next, the limit as x → ∞ is ∞, beause if x is positive as 1/x → 0, then x+ 3 is

positive and 1/(x+ 3) → 0, or going down to an even more basi level, beause 1/(1/t+ 3) simpli�es to

t/(1 + 3t), whih is ontinuous, positive when t is positive, and 0 when t is 0. Finally, the limit as x →
−∞ is −∞, for essentially the same reason, but now using 1/(1/t+ 1) and looking at negative values.

(This time, 1/(1/t+ 1) an be positive even when t is negative, but not when t is su�iently lose to 0,
whih is what matters.)

The analysis in the previous paragraph is somewhat ad ho, showing how you would work diretly

from the de�nitions. The next setion is about quik methods, but it will still be useful to think about

what happens in various diretions.

2.5 Calulation tehniques

Here I disuss the pratial aspets of alulating limits.

The �rst fat to know about alulating limits is that the limit of the variable itself is already given

by the diretion:

lim
x→c−

x = c, lim
x→c+

x = c, lim
x→c

x = c, lim
x→∞

x = ∞, lim
x→−∞

x = −∞.
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A similarly important priniple is that the limit of a onstant, in any diretion, is that onstant:

lim
D

C = C.

Of ourse, we rarely bother with limits as simple as these! However, we have the powerful priniple that if

an expression is built using only the usual operations,* then the limit of the expression may be omputed

using these operations.

Expliitly, eah of these equations is true whenever the right-hand side is de�ned (so that in partiu-

lar the left-hand side is automatially also de�ned), so long as n is onstant and limD w is positive:

lim
D

(u+ v) = lim
D

u+ lim
D

v; lim
D

(u− v) = lim
D

u− lim
D

v;

lim
D

(uv) = lim
D

u · lim
D

v; lim
D

(u/v) =
limD u

limD v
;

lim
D

(−u) = − lim
D

u; lim
D

(|u|) =
∣

∣

∣
lim
D

u
∣

∣

∣
;

lim
D

(un) =
(

lim
D

u
)

n
; lim

D
(wu) =

(

lim
D

w
)

limD u
;

lim
D

( n
√
u) = n

√

lim
D

u; lim
D

(logv u) = loglimD v

(

lim
D

u
)

;

lim
D

(sinu) = sin
(

lim
D

u
)

; lim
D

(cosu) = cos
(

lim
D

u
)

;

lim
D

(tanu) = tan
(

lim
D

u
)

; lim
D

(cotu) = cot
(

lim
D

u
)

;

lim
D

(secu) = sec
(

lim
D

u
)

; lim
D

(cscu) = csc
(

lim
D

u
)

;

lim
D

(asinu) = asin
(

lim
D

u
)

; lim
D

(acosu) = acos
(

lim
D

u
)

;

lim
D

(atanu) = atan
(

lim
D

u
)

; lim
D

(acotu) = acot
(

lim
D

u
)

;

lim
D

(asecu) = asec
(

lim
D

u
)

; lim
D

(acscu) = acsc
(

lim
D

u
)

.

In this way, we an evaluate most limits.

We an do even more limits if we extend arithmeti to the values ±∞ as follows, where a is (in gener-

al) any real number or ±∞:

a+∞ = ∞+ a = ∞ if a > −∞; a−∞ = −∞+ a = −∞ if a < ∞;

a · ∞ = ∞ · a = ∞ if a > 0; a · ∞ = ∞ · a = −∞ if a < 0;

−∞ · a = −(∞ · a); a÷±∞ = 0 if −∞ < a < ∞;

∞a = ∞ if a > 0; (±∞)
a
= 0 if a < 0;

a∞ = ∞ if a > 1; a∞ = 0 if − 1 < a < 1;

a−∞ = 0 if |a| > 1; a−∞ = ∞ if 0 ≤ a < 1;
a
√
∞ = ∞ if 0 < a < ∞;

∞√a = 1 if 0 < a < ∞.

Rather than memorizing all of these, it is usually enough to think to yourself what happens if a given

number beomes arbitrarily large.

* Addition, subtration, multipliation, division, absolute values, opposites, reiproals, raising to pow-

ers when the exponent is onstant or the base is always positive, extrating roots when the index is on-

stant or the base is always positive, logarithms, trigonometri operations, and inverse trigonometri opera-

tions, the same as the list of ontinuous operations spanning pages 6 and 7
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Finally, we an even divide by zero sometimes, if we are omputing limits!

lim
D

(u/v) = ∞ if lim
D

u > 0, lim
D

v = 0, and v > 0;

lim
D

(u/v) = −∞ if lim
D

u > 0, lim
D

v = 0, and v < 0;

lim
D

(u/v) = −∞ if lim
D

u < 0, lim
D

v = 0, and v > 0;

lim
D

(u/v) = ∞ if lim
D

u < 0, lim
D

v = 0, and v < 0.

In other words, if v → 0 with a onsistent sign, then the limit of u/v is plus or minus in�nity, depending

on how the sign of v ompares to the sign of u, as long as u approahes something other than 0.
However, this tells us nothing if u → 0 too; in other words, if you work out the limit as far as 0/0.

The same goes for expressions involving in�nity suh as ∞−∞, 0 · ∞, ∞÷∞, ∞0
, and 1∞, none of whih

is handled by the rules on page 13. Additionally, the rule for limD (wu) requires that limD w > 0; but even
if w > 0 in the diretion D, it s still possible to have limD w = 0. In this ase, it s best to look at 1/w
(whose limit is in�nite) instead, but the form 00 annot be treated in this way. These are all alled in-

determinate forms.

To handle an indeterminate form, people typially use an advaned tehnique suh as L H�opital s Rule

(page 25) or expansion into power series (page 50). However, you an often manipulate the expression al-

gebraially to get something that works.

While I m at it, here is another rule, alled the Chain Rule for limits: If limD u is a real number and

f is ontinuous there, then

lim
D

f(u) = f
(

lim
D

u
)

.

(Compare the Chain Rule for di�erentials in Setion 3.3 below.) This is not something that you ll use di-

retly if you have all of the rules on page 13, but you might need it in a more theoretial situation where

you don t know what funtion f is (but you still know that it s ontinuous).
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3 Di�erentiation

The single most important topi in Calulus is probably di�erentiation. Whereas limits tell us where a

quantity is going as it hanges, di�erentiation tells us how quikly the quantity is hanging. Tehnially,

the question answered by limits does ome up more often, but it s also trivial to solve in the vast majority

of pratial ases (when the variable is given by a ontinuous funtion); it may not seem that way while

you re doing the problems, but that s just beause we re foussing on the exeptions. Di�erentiation, how-

ever, is rarely trivial. That said, it is also rarely di�ult; you just need to learn the rules.

A word about notation: As I remarked earlier (on page 3), when y = f(x), we an write dy/dx =
f ′(x); both sides of the latter equation are notation for a derivative, whih is one of the things that dif-

ferentiation produes. The left-hand side means the derivative of y with respet to x, while f ′
in the right-

hand side is a funtion whih is the derivative of the original funtion f . To say that the derivative of f is

f ′
suggests that the derivative is a basi onept, not a ombination of anything more ompliated, and

that is how the textbook approahes derivatives. But the left-hand side suggests that a derivative is a

ratio, the result of dividing dy by dx, and this is how they were originally used. As for dy and dx them-

selves, they are the di�erentials of y and x; a di�erential is another thing that di�erentiation produes.

I will start with an intuitive desription of di�erentials, then turn to derivatives for a preise de�ni-

tion, then bak to di�erentials to tie it all together. (Then I ll bring up some appliations and the like.)

3.1 Di�erenes

I ll introdue di�erentials by starting with a related onept that an be done with pure Algebra. If a vari-

able quantity x hanges from the value a to the value b, then the di�erene between these two values is

∆x = b− a. (The triangle here is an upperase Greek letter Delta, so ∆x is often read `Delta Ex', but you

an also pronoune `∆' as `di�erene' or `hange in'.) More generally, as x hanges from a to b, some oth-

er quantity u may hange as well, although (usually) between di�erent values. Whatever the di�erene in

those values is, that is the di�erene in u when x is a and ∆x is b− a, written ∆u|x=a,
∆x=b−a

. Or to put it

another way, if x hanges from a to a+ c, then u will hange between two values, and the di�erene be-

tween these is ∆u|x=a,
∆x=c

.

Formally, every variable x in a problem gets a new variable ∆x (its di�erene) assoiated with it.

In priniple, you an evaluate an expression with any value of x and any value of ∆x, but any relation-

ships between the variables will give rise to relationships between the variables di�erenes. To be spei�,

suppose that every variable is a funtion of some independent variable t, as in the evaluation notation on

page 4. Then if x = g(t), we de�ne
∆x| t=c,

∆t=h
= g(c+ h)− g(c),

as long as g is de�ned at both c and c+ h. (If it isn t, then ∆x is unde�ned for those values of t and ∆t.)
As with evaluation notation, you don t need to refer to t diretly; you an use the shortut that

∆u|x=c,
∆x=h

= u|x=c+h − u|x=c,

if these are de�ned. For example,

∆(2x+ 3)|x=4,
∆x=2

= (2x+ 3)|x=4+2 − (2x+ 3)|x=4 = (2(4 + 2) + 3)− (2(4) + 3) = 4.

In other words, as x varies from 4 to 4 + 2 = 6, u = 2x+ 3 varies from 11 to 15, and the di�erene be-

tween these is 4.
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3.2 Di�erentials

The idea behind a di�erential is that it is an in�nitely small di�erene. There are various ways to make

this idea logially preise, but we will not go into that in this applied ourse. (I will return to this at the

end of the ourse, if there is time.) In plae of the upperase Greek letter `∆' for a standard-sized (�nites-

imal) hange, we use the lowerase Latin letter `d' for an in�nitely small (in�nitesimal) hange. So if u
varies smoothly, then du is the di�erential of u, whih more or less means ∆b

au when b− a is in�nitely

small (but not quite zero).

Although this is usually not an issue in applied situations, it s important that u be a smoothly varying

quantity, also alled a smooth variable. Exatly what this means is, again, something that an be made

preise. But for now, you an think of it as meaning that, whenever the underlying varying reality hang-

es by a small amount, the variable quantity u also hanges by a small amount, at a de�nite rate, with no

sudden jumps or in�nitely fast hange.

3.3 Di�erenes and di�erentials of linear expressions

The following rules hold exatly for di�erenes:

• ∆k = 0 if k is onstant;

• ∆(u+ v) = ∆u+∆v;
• ∆(ku) = k∆u if k is onstant.

These equations hold for �nitesimal hanges, so they also hold for in�nitesimal hanges:

• dk = 0 if k is onstant (the Constant Rule);

• d(u+ v) = du+ dv (the Sum Rule);

• d(ku) = k du if k is onstant (the Multiple Rule).

This allows us to alulate di�erentials of linear expressions.

For example:

d(7x) = 7 dx;

d(−5x) = −5 dx;

d(x+ 2) = dx+ d(2) = dx+ 0 = dx;

d(y − 4) = dy + d(−4) = dy + 0 = dy;

d(2t+ 3) = d(2t) + d(3) = 2dt+ 0 = 2dt;

d(7− x) = d(−1x+ 7) = −1 dx+ 0 = −dx;

d(2x+ 3y) = d(2x) + d(3y) = 2 dx+ 3dy;

et.

3.4 Derivatives of funtions

Given any funtion f and a number c in the domain of f , the di�erene quotient of f at c is a fun-

tion f̃c, given by

f̃c(h) =
f(c+ h)− f(c)

h
.

Note that f̃c is not de�ned at 0. (In general, it s de�ned at any value h suh that h 6= 0 and f is de�ned at

c+ h.) The derivative of f at c is the limit of f̃c approahing 0:

f ′(c) = lim
h→0

f̃c(h) = lim
h→0

f(c+ h)− f(c)

h
.

(When this exists, we say that f is di�erentiable at c.) This is the de�nition in the textbook (see page 116),

exept that the book doesn t bother to give a name to f̃c.
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Beause limits are losely related to ontinuity, it s possible to give a de�nition of the derivative based

on ontinuity. First, extend the de�nition of f̃c like this:

f̃c(h) =







f(c+ h)− f(c)

h
for h 6= 0,

f ′(c) for h = 0.

If there exists a unique number f ′(c) that makes this funtion ontinuous at 0, then that number is the

derivative of f at c; if there isn t, then this derivative doesn t exist and f is not di�erentiable at c. As it
is, this is just the usual de�nition stated with di�erent terminology. Now I ll do a little algebra on f̃c: if
h 6= 0 and f is de�ned at c+ h, then

f̃c(h) =
f(c+ h)− f(c)

h
,

h f̃c(h) = f(c+ h)− f(c),

h f̃c(h) + f(c) = f(c+ h),

f(c+ h) = f(c) + f̃c(h)h;

if h = 0, then this equation is still true as long as f̃c is de�ned at 0, sine then it just says that f(c) =
f(c). So another way to de�ne the derivative is to say that f is di�erentiable at c if there exists a funtion

f̃c that is ontinuous at 0 and satis�es the last equation above (for all h suh that f is de�ned at c+ h),
and then f ′(c) = f̃c(0). One reason that this is useful is that having the entire funtion f̃c an help with

proving theorems about derivatives; see the next setion.

3.5 Theorems about derivatives

Every operation has a orresponding rule for derivatives. To begin with, reall that if f and g are fun-

tions, then f + g is another funtion, whih is de�ned wherever both f and g are de�ned, and whose val-

ues are given by (f + g)(x) = f(x) + g(x). We similarly have f − g, fg and f/g (but the last of these is

unde�ned wherever the value of g is zero, even if f and g are both de�ned there).

The theorems about their derivatives are as follows:

• The Sum Rule: (f + g)
′
= f ′ + g′,

• The Di�erene Rule: (f − g)
′
= f ′ − g′,

• The Produt Rule: (fg)
′
= f ′g + fg′,

• The Quotient Rule: (f/g)
′
=

f ′g − fg′

g2
. These are equations about funtions; you an also put an

argument into them:

(f + g)
′
(x) = f ′(x) + g′(x),

(f − g)
′
(x) = f ′(x)− g′(x),

(fg)
′
(x) = f ′(x)g(x) + f(x)g′(x);

(f/g)
′
(x) =

f ′(x)g(x)− f(x)g′(x)

g(x)
2 .

A general strategy to prove these is to apply the equation for f(c+ h). For example, to prove that

fg is di�erentiable wherever f and g are, with (fg)
′
= f ′g + fg′, I ll use f̃c and g̃c along with the limit
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de�nition of (fg)
′
:

(fg)
′
(c) = lim

h→0

(fg)(c+ h)− (fg)(c)

h
= lim

h→0

f(c+ h) g(c+ h)− f(c) g(c)

h

= lim
h→0

Ä

f(c) + f̃c(h) h
ä Ä

g(c) + g̃c(h) h
ä

− f(c) g(c)

h

= lim
h→0

f(c) g(c) + f(c) g̃c(h)h+ f̃c(h)h g(c) + f̃c(h)h g̃c(h)h− f(c) g(c)

h

= lim
h→0

f̃c(h) g(c)h+ f(c) g̃c(h)h+ f̃c(h) g̃c(h)h
2

h
= lim

h→0

Ä

f̃c(h) g(c) + f(c) g̃c(h) + f̃c(h) g̃c(h) h
ä

= f̃c(0) g(c) + f(c) g̃c(0) + f̃c(0) g̃c(0) 0 = f ′(c) g(c) + f(c) g′(c) + f ′(c) g′(c) 0

= f ′(c) g(c) + f(c) g′(c).

(To evaluate the limit near the end, I need f̃c and g̃c to be ontinuous at 0.) I used smaller steps than the

textbook does on page 133 (whih is the only reason that my proof is longer), and I think that it s a little

more straightforward, without the part where you add and subtrat something without knowing yet why it

will help.

The derivative of a onstant funtion is the onstant zero funtion; that is, if f(x) = K for all x, where
K is some onstant, then

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

K −K

h
= lim

h→0

0

h
= lim

h→0
0 = 0.

This fat may be alled the Constant Rule. Using this, a speial ase of the Produt Rule is the Multiple

Rule:

(kf)
′
(x) = kf ′(x)

if k is a onstant. Another useful rule is the Power Rule: If f(x) = xn
for all x, where n is a onstant,

then

f ′(x) = nxn−1
.

(For integer values of n, this may be proved by repeated appliation of the Produt and Quotient Rules,

and there is a more ompliated argument that applies to other rational values of n; however, a omplete

proof is easiest after onsidering exponents and logarithms.)

Using these rules, you an di�erentiate any polynomial funtion, or more generally any rational fun-

tion. For a polynomial, you di�erentiate term by term (allowed by the Sum Rule), ignoring any onstant

terms (by the Constant Rule). For eah term, you apply the Multiple Rule (to leave any oe�ients alone)

and the Power Rule (to bring down the exponent as a oe�ient and subtrat one from that exponent).

For example, if f(x) = 3x4 − 5x2 + 2x− 12, then f ′(x) = 3(4x4−1)− 5(2x2−1) + 2(1x1−1) + 0 = 12x3 −
10x+ 2. For rational funtions, you must also apply the Quotient Rule. There are examples in Setion 3.3

of the textbook and in my video online.

3.6 The Chain Rule

One more rule, very important for theoretial purposes, is the Chain Rule. Using this, I ll be able to jus-

tify a new notation for derivatives and an even faster way to alulate them, so in the end you won t need

to refer to the Chain Rule expliitly. However, we need it �rst to ensure that the new tehnique will work!

Here is the Chain Rule in funtion notation:
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If g is di�erentiable at c and f is di�erentiable at g(c), then f ◦ g is di�erentiable at c and

(f ◦ g)′(c) = f ′
Ä

g(c)
ä

g′(c).

Here, f ◦ g is the omposite of f after g, de�ned by (f ◦ g)(x) = f
Ä

g(x)
ä

.

I ll prove this using g̃c and f̃g(c):

(f ◦ g)′(c) = lim
h→0

(f ◦ g)(c+ h)− (f ◦ g)(c)
h

= lim
h→0

f
Ä

g(c+ h)
ä

− f
Ä

g(c)
ä

h

= lim
h→0

f
Ä

g(c) + g̃c(h) h
ä

− f
Ä

g(c)
ä

h
= lim

h→0

f
Ä

g(c)
ä

+ f̃g(c)
Ä

g̃c(h) h
ä

g̃c(h)h− f
Ä

g(c)
ä

h

= lim
h→0

f̃g(c)
Ä

g̃c(h) h
ä

g̃c(h)h

h
= lim

h→0

(

f̃g(c)
Ä

g̃c(h) h
ä

g̃c(h)
)

= f̃g(c)
Ä

g̃c(0) 0
ä

g̃c(0) = f̃g(c)
Ä

g′(c) 0
ä

g′(c) = f̃g(c)(0) g
′(c)

= f ′
Ä

g(c)
ä

g′(c).

This proof is as straightforward as something so abstrat an be, and it an be done immediately and

rigorously without postponing things as the textbook does. I have the de�nition of derivative using f̃c to
thank for this; this de�nition of derivative will be handy for some other proofs later on, suh as for the

Mean Value Theorem.

One immediately useful onsequene of the Chain Rule is a generalized form of the Power Rule (what

the textbook alls the Power Chain Rule): If g is di�erentiable at c and n is a onstant, then gn is also

di�erentiable at c (where (gn)(x) is de�ned as g(x)
n
), and (gn)

′
(c) = ng(c)

n−1
g′(c). The reason is that gn

is a omposite f ◦ g where f is the power funtion given by f(x) = xn
.

3.7 Di�erentials

Many alulations in alulus are easier to do using di�erentials. Furthermore, di�erentials and the related

di�erential forms are often used in appliations, espeially (but not only) to physis. The o�ial textbook

overs di�erentials (in Setion 3.11), but inompletely and only in one minor appliation. It then uses dif-

ferentials again later (mostly in material for Calulus 2 and 3), but they are useful muh earlier. So I will

make heavy use of them.

If x is a variable quantity, then dx is the di�erential of x. You an think of dx as indiating an in-

�nitely small (in�nitesimal) hange in the value of x, or (better) the amount by whih x hanges when an

in�nitesimal hange is made (an in�nitely small hange in the value of the independent variable t). A pre-

ise de�nition is in the next setion, but you will not be tested diretly on that; what you need to know is

how to use di�erentials.

Note that dx is not d times x, and dx is also not exatly a funtion of x. Rather, x (being a variable

quantity) should itself be a funtion of some other quantity t, and dx is also a funtion of a sort; so d is an

operator : something that turns one funtion into another funtion. However, an expression like u dx does

involve multipliation: it is u times the di�erential of x.
We often divide one di�erential by another; for example, dy/dx is the result of dividing the di�eren-

tial of y by the di�erential of x. The textbook introdues this notation early to stand for the derivative

of y with respet to x, and indeed it is that; but what the book doesn t tell you is that dy/dx literally

is dy divided by dx. Unfortunately, d2y/dx2
, the seond derivative of y with respet to x, is not literally

d2y = d(dy) divided by dx2 = (dx)
2
; for this reason, I prefer the notation (d/dx)

2
y, meaning (d/dx)(d/dx)y =

(d/dx)(dy/dx) = d(dy/dx)/dx for the seond derivative.

The most important fat about di�erentials is this: If f is a di�erentiable funtion, then

d
Ä

f(u)
ä

= f ′(u) du.

Page 19 of 53



That is, the di�erential of f(u) equals f ′(u) times the di�erential of u, where f ′
is the derivative of the

funtion f . This fat not only shows the relationship between di�erentials and derivatives, but also (be-

ause u ould be any quantity) it enapsulates the Chain Rule in di�erential form. The Chain Rule is an

important priniple in alulus, whih is often di�ult to learn how to use; but with di�erentials it is easy.

For example, suppose that you have disovered (say from the de�nition as a limit) that the derivative

of f(x) = x2
is f ′(x) = 2x. Then this fat an be expressed in di�erential form:

(*)d(x2) = 2x dx.

Conversely, if (by performing a alulation with di�erentials) you disover the equation (*) above, then

you know the derivative of f as well:

f ′(x) =
d
Ä

f(x)
ä

dx
=

d(x2)

dx
=

2x dx

dx
= 2x.

Whihever of these fats you disover �rst, one you know them, you know something even more general:

d(u2) = 2u du.

(The power to derive this from equation (*) is the Chain Rule.) The value of this is that u an be any ex-

pression whatsoever; for example, if u = x2
again, then

d(x4) = d
Ä

(x2)
2
ä

= 2(x2) d(x2) = 2x2(2x dx) = 4x3 dx.

So now you have learnt a new derivative, without having to alulate it from srath.

Every theorem about derivatives of funtions may also be expressed as a theorem about di�erentials.

Here are the most ommon rules:

• The Constant Rule: d(K) = 0 if K is onstant.

• The Sum Rule: d(u+ v) = du+ dv.
• The Translate Rule: d(u+ C) = du if C is onstant.

• The Di�erene Rule: d(u− v) = du− dv.
• The Produt Rule: d(uv) = v du+ u dv.
• The Multiple Rule: d(ku) = k du if k is onstant.

• The Quotient Rule: d

Å

u

v

ã

=
v du− u dv

v2
.

• The Power Rule: d(un) = nun−1 du if n is onstant.

• The Root Rule: d( m
√
u) =

m
√
u du

mu
if m is onstant.

Of these, only the Constant Rule, the Sum Rule, the Produt Rule, and the Power Rule are absolutely

neessary, sine every other expression built out of the operations in the rules above an be built out of

the operations in these four rules. However, it is often handy to use all of these rules; it is up to you how

many of these rules to learn. (The Power Rule given here really orresponds to the Generalized Power

Rule in the textbook, beause it inorporates the Chain Rule within it. The Root Rule is not in the text-

book, beause a root an be algebraially transformed into a power; but the version here rationalizes the

denominator, whih an be onvenient.)

In addition, every time that you learn the derivative of a new funtion, you learn a new rule for dif-

ferentials, by applying the Chain Rule to that funtion. I already showed you an example of this on page

16: applying the Chain Rule to the funtion f(x) = x2
gives the speial ase of the Power Rule for n = 2.

Here are a few other funtions whose derivatives you will learn, expressed as rules for di�erentials:
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• d(expu) = expu du.

• d(lnu) =
du

u
.

• d(sinu) = cosu du.
• d(cosu) = − sinu du.

• d(atanu) =
du

u2 + 1
.

And more! (To be lear, expu means eu, lnu = loge u, u is in radians in sinu and cosu, and atanu is

what is also written arctanu, Tan−1 u, or tan−1 u and gives a result in radians.)

Notie that every one of these rules turns the di�erential on the left into a sum of terms (possibly on-

ly one term, or none in the ase of the Constant Rule), eah of whih is an ordinary expression multiplied

by a di�erential (or something algebraially equivalent to this). An expression like this is alled a di�er-

ential form (although atually there are more general sorts of di�erential forms). If, when you are al-

ulating the di�erential of an expression, your result at any stage is not like this, then you have made a

mistake!

3.8 De�ning di�erentials

To formally de�ne what di�erentials are and prove their properties, I ll make the same assumption that I

made at the beginning of these notes, that there is an independent variable t that every other variable is

a funtion of. Then, I said that if u = f(t), then u|t=c = f(c). Now I ll say that, if u = f(t) and the fun-

tion f is di�erentiable, then

du| t=c,
dt=h

= f ′(c)h.

More generally, if u = f(t) and v = g(t), then

(u dv)| t=c,
dt=h

= f(c) g′(c)h.

Again, this is abstrat, but the onrete appliation is straightforward; for example:

(2x dx+ 3dx)|x=4,
dx=0.05

= 2(4)(0.05) + 3(0.05) = 0.55,

(2x dx+ 3y dy)|x=4,y=5,
dx=0.05,dy=0.02

= 2(4)(0.05) + 3(5)(0.02) = 0.7.

(I ve put small numbers in for dx and dy, beause this is most often what omes up in pratie, although

for theoretial purposes it doesn t matter.) It s now more ommon to be given only partial information;

for example:

(2x dx+ 3dx)|x=4 = 2(4) dx+ 3dx = 11dx,

(2x dx+ 3y dy)|x=4,
y=5

= 2(4) dx+ 3(5) dy = 8dx+ 15dy.

Notie that you don

′
t plug in the values of x and y inside the di�erential operator d; if you re not given

values of dx and dy, then those di�erentials must remain in the answer.

While expressions like the above ome up oasionally (see the disussion of linear approximation

on pages 21 and 22), the main purpose of a preise de�nition is to prove theorems. (That s how we an

be sure that the rules of Calulus will always work, at least when the de�nitions that prove them an be

made to apply.) Earlier I gave a list of rules for di�erentials; we an prove these using the preise de�ni-

tion of di�erential and the known rules for derivatives of funtions. For example, if u = f(t) and v = g(t),
then uv = f(t) g(t) = (fg)(t). Therefore,

d(uv)| t=c,
dt=h

= (fg)
′
(c)h =

Ä

f ′(c) g(c) + f(c) g′(c)
ä

h = g(c) f ′(c)h+ f(c) g′(c)h = (v du+ u dv)| t=c,
dt=h

.

Here, I ve used the formal de�nition of di�erential along with the Produt Rule for derivatives of fun-

tions. The onlusion is that d(uv) and v du+ u dv always evaluate to the same result, so

d(uv) = v du+ u dv,
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whih is the Produt Rule for di�erentials. In the same way, all of the rules for di�erentials follow from

rules for derivatives of funtions.

The Chain Rule is an important speial ase, so I ll prove it too. If u = g(t) and f is any funtion,

then f(u) = f(g(t)) = (f ◦ g)(t), so if f is di�erentiable, then

d
Ä

f(u)
ä

∣

∣

∣ t=c,
dt=h

= d
Ä

(f ◦ g)(t)
ä

∣

∣

∣ t=c,
dt=h

= (f ◦ g)′(c)h = f ′
Ä

g(c)
ä

g′(c)h =
Ä

f ′(u) du
ä

∣

∣

∣ t=c,
dt=h

.

Again, I used the de�nition of di�erential and the Chain Rule for funtions, and my onlusion is the Chain

Rule for di�erentials:

d
Ä

f(u)
ä

= f ′(u) du

whenever f is a di�erentiable funtion.

It s not really essential to assume that there exists a single independent variable that every other vari-

able is a funtion of, and we ll stop making that assumption in Calulus 3 (if you stik around that long).

Then the formal de�nition will beome a little trikier, but all of the rules for di�erentials will ontinue to

apply exatly as I stated them above.

3.9 Using di�erentials

The main tehnique for using di�erentials is simply to take the di�erential of both sides of an equation.

However, you may only do this to an equation that holds generally , but not to an equation that holds only

for partiular values of the variables. (Ultimately, this is beause d is an operator, not a funtion, so it

must be applied to entire funtions, not only to partiular values of those funtions.)

The simplest ase is an equation suh as y = exp (x2), when we want the derivative of y with respet

to x. So:
y = exp (x2);

dy = d(exp (x2)) = exp (x2) d(x2) = exp (x2) · 2x dx = 2x exp (x2) dx;

dy

dx
= 2x exp (x2).

Now we have the derivative. If we want the seond derivative, then we do this again:

dy/dx = 2x exp (x2);

d(dy/dx) = d
Ä

2x exp (x2)
ä

= exp (x2) d(2x) + 2x d
Ä

exp (x2)
ä

= exp (x2) · 2 dx+ 2x · 2x exp (x2) dx = (2 exp (x2) + 4x2 exp (x2)) dx;

(d/dx)
2
y =

d(dy/dx)

dx
= 2 exp (x2) + 4x2 exp (x2).

Now we have the seond derivative (also written d2y/dx2
).

The previous example began with an equation solved for y. But we don t need this; suppose instead

that we have y5 + x2 = x5 + y (whih annot be solved for either variable using the usual algebrai oper-

ations of addition, subtration, multipliation, division, powers, and roots). Undaunted, we forge ahead

anyway:

y5 + x2 = x5 + y;

d(y5 + x2) = d(x5 + y);

d(y5) + d(x2) = d(x5) + dy;

5y5−1 dy + 2x2−1 dx = 5x5−1 dx+ dy;

5y4 dy − dy = 5x4 dx− 2x dx;

(5y4 − 1) dy = (5x4 − 2x) dx;

dy

dx
=

5x4 − 2x

5y4 − 1
.
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This proess is alled impliit di�erentiation.

The seond derivative is a little more straightforward at �rst (or it would be if we didn t have to use

the Quotient Rule), but there is a twist at the end:

dy/dx =
5x4 − 2x

5y4 − 1
;

d(dy/dx) = d

Å

5x4 − 2x

5y4 − 1

ã

=
(5y4 − 1) d(5x4 − 2x)− (5x4 − 2x) d(5y4 − 1)

(5y4 − 1)
2

=
(5y4 − 1)(20x3 − 2) dx− (5x4 − 2x)(20y3) dy

(5y4 − 1)
2

=
20x3 − 2

5y4 − 1
dx− 20y3(5x4 − 2x)

(5y4 − 1)
2 dy;

(d/dx)
2
y =

d(dy/dx)

dx
=

20x3 − 2

5y4 − 1
− 20y3(5x4 − 2x)

(5y4 − 1)
2

dy

dx

=
20x3 − 2

5y4 − 1
− 20y3(5x4 − 2x)

(5y4 − 1)
2

5x4 − 2x

5y4 − 1

(whih ould be simpli�ed further). Notie that I substitute the known expression for dy/dx in the last

step.

Another handy appliation of di�erentials is the ase where both quantities x and y may be expressed

as funtions of some other quantity t. (For the purposes of formal de�nitions, we always assume that this

is possible, but now we re really going to use it.) If we start with the same equation as above, then this

will give us an equation relating the derivatives with respet to t:

y5 + x2 = x5 + y;

d(y5 + x2) = d(x5 + y);

d(y5) + d(x2) = d(x5) + dy;

5y5−1 dy + 2x2−1 dx = 5x5−1 dx+ dy;

5y4
dy

dt
+ 2x

dx

dt
= 5x4 dx

dt
+

dy

dt
.

If we have information about one or both of these derivatives, then this equation will often give us useful

information to solve a problem. This situation is alled related rates, sine derivatives an be viewed as

rates of hange (espeially derivatives with respet to time t, although the t in the equation above doesn t

have to stand for time).

When we get to integrals, di�erentials beome so useful that even the textbook starts using them, but

I ll save that for later.

3.10 Derivatives with respet to time

Derivatives with respet to time are a major appliation of Calulus. Here are some examples:

Quantity: Derivative (with respet to time): Seond derivative: Third derivative:

Position Veloity Aeleration Jerk

Veloity Aeleration Jerk

Speed Colloquial aeleration

Aeleration Jerk

Net wealth Net inome

National debt National de�it
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Position tells you where something is, while veloity tells you how it is moving, that is how its po-

sition is hanging with time. Veloity is not quite the same thing as speed, sine veloity keeps trak of

diretion as well. (In this lass, most problems involving motion will take plae in only one dimension, so

there are two diretions, represented by positive and negative veloity, while speed is the absolute value of

veloity.)

The derivative of veloity with respet to time, in other words the seond derivative of position with

respet to time, is aeleration in the tehnial sense of this term. On the other hand, the derivative of

speed is olloquial aeleration, whih re�ets how the term is used in everyday life. Colloquially, we

say that an objet is aelerating if its speed inreases with time (in other words if it is speeding up) and

deelerating if its speed dereases (in other words if it is slowing down). But in the tehnial sense of the

term, if an objet is moving in the negative diretion and slows down, then its veloity is beoming less

negative and more positive, and so its aeleration is positive, even though its olloquial aeleration is

negative. (For motion in more than one dimension, its even possible for the olloquial aeleration to be

zero even while the tehnial aeleration is far from zero; this happens when hanging diretion while

travelling at a onstant speed.)

The time derivative of aeleration (in the tehnial sense) is jerk; that makes jerk the seond deriva-

tive of veloity and the third derivative of position. Whereas position and veloity an t be diretly felt,

you feel aeleration as a pressure or absene thereof (a sense of falling or being held or pushed), and a

sudden hange in that aeleration is a jerk or yank. In engineering, aeleration must be ontrolled be-

ause it an destroy objets by rushing; jerk must be ontrolled beause it an destroy objets by break-

ing them apart. Even higher derivatives of position are sometimes also studied, although the terminology

varies.

Turning to �nanes, your net wealth is the total value of all assets that you own minus the value of

all of your debts. (If you owe more than you own, then your net wealth is negative.) This is measured in

units of money, suh as dollars. Your net inome, on the other hand, is the total value of everything that

you reeive (as wages, gifts, and so forth) in a period of time minus the value of your expenses. This is

measured in units of money per unit of time, suh as dollars per year. In �nane, the default unit of time

is a year, so you ll often say that someone s inome is so many dollars, but this really means so many dol-

lars per year. Unlike physial motion, money goes in and omes out in disrete hunks, so the ontinuous

ideas of Calulus are only an approximation, but they an be a good approximation for some purposes.

Turning from personal �nanes to national, a ountry s government usually has some debt, alled

the ountry s national debt, and if the government spends more than it reeives from taxes and oth-

er revenue, then the di�erene is the national de�it. The debt is the total amount of money owed by

the government, while the de�it is the additional amount that has to be borrowed in a given period of

time. Again, de�it should really be measured in units of money per unit of time; so if someone says the

the U.S. national de�it is nearly 500 billion dollars, this really means 500 billion dollars per year. This is

the same as 5000 billion dollars (or 5 trillion dollars) per deade (sine a deade is 10 years). On the other

hand, when they say that the U.S. national debt is nearly 20 trillion dollars, then they are saying exatly

what they mean; this is the net result of all of the de�its (and oasional surpluses, whih are negative

de�its) in the past.

In 2010, there was a widely ited eonomis paper (Reinhart & Rogo�) that argued that a ountry

tended towards eonomi disaster as its government s debt approahed its gdp (gross domesti produt,

a measure of a ountry s overall inome). In 2013, a review (Herndon, Ash, & Pollin) found statistial er-

rors that undemined the paper s onlusions, and this made the mainstream news media for a while. This

should have just been the normal proess of siene: a �awed idea being orreted. But it was big news

beause Reinhart & Rogo� had struk an intuitive hord; it made sense that of ourse your debt should

always be well below your ability to pay it o�. But in fat that only sounds reasonable if you ignore the

units! Reinhart & Rogo� s onlusion was really that a ountry was ourting disaster if its government s

debt was lose to its gdp times one year ; otherwise, the units of measurement don t make sense. The idea

that a ountry should have enough inome to pay o� its government s debt beomes the idea that a oun-

try should have enough inome to pay o� its government s debt in one year (if all inome were devoted to

this purpose), and there s no intuitive reason why that should be neessary to avoid eonomi ruin. (It is

still true that a ountry s eonomy tends to be better o� when its government debt divided by its gdp is
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lower than otherwise, and it s oneivable that there ould be some reason that there s something speial

about when that quotient is lose to one year; but there isn t.)

3.11 Linear approximation

Reall from page 13 above that if f is di�erentiable at c, then

f(c+ h) = f(c) + f̃c(h)h

for some funtion f̃c that s ontinuous at 0 (and then f̃c(0) is f
′(c)). Sine f̃c is ontinuous at 0, we an

say that f̃c(h) ≈ f̃c(0) when h ≈ 0, or in other words, f̃c(h) ≈ f ′(c) when h ≈ 0. Putting this approxima-

tion in the equation above, we get

f(c+ h) ≈ f(c) + f ′(c)h

when h ≈ 0. Writing x for c+ h (so that h = x− c), you an also put this as

f(x) ≈ f(c) + f ′(c) (x− c)

when x ≈ c. While the left-hand side ould be any di�erentiable funtion, the right-hand side is a linear

funtion of x; this funtion is the linear approximation to f near c, or the linearization of f near c.
The textbook likes to name this funtion L; so f(x) ≈ L(x) = f(c) + f ′(c) (x− c). I don t like that

name, beause whih funtion you get as the linear approximation depends on whih funtion you start

with as well as on whih number c you look at. So I write Lf,c for the linearization of f near c:

f(x) ≈ Lf,c(x) = f(c) + f ′(c) (x− c).

This is atually only the beginning of a whole sequene of approximations, eah (typially) better

than the one before it:

f(x) ≈ f(c), a onstant, if f is ontinuous at c;

f(x) ≈ f(c) + f ′(c) (x− c), a linear funtion of x, if f is di�erentiable at c;

f(x) ≈ f(c) + f ′(c) (x− c) +
1

2
f ′′(c) (x− c)

2
, a quadrati funtion of x, if f is twie di�erentiable at c;

f(x) ≈ f(c) + f ′(c) (x− c) +
1

2
f ′′(c) (x− c)

2
+

1

6
f ′′′(c) (x− c)

3
, a ubi funtion of x,

if f is 3-times di�erentiable at c;

.

.

.

(This sequene of approximations is overed in Calulus 2; see Setion 9.8 of the textbook and page 45 of

these notes.)

It s handy to desribe linear approximation in terms of di�erentials and di�erenes. While a di�eren-

tial represents an in�nitesimal (in�nitely small) hange, a di�erene represents an appreiable or �nites-

imal (meaning not in�nitely small) hange. As x hanges from c to c+ h, we say that the di�erene in x
is

∆x = (c+ h)− c = h.

Meanwhile, if y = f(x), then the di�erene in y is

∆y = y|x=c+h − y|x=c = f(c+ h)− f(c).

To be spei�, we an write

∆y|x=c,
∆x=h

= f(c+ h)− f(c).
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Then the linear approximation says that

∆y|x=c,
∆x=h

= f(c+ h)− f(c) ≈ f(c) + f ′(c)h− f(c) = f ′(c)h = dy|x=c,
dx=h

.

So in the end, the linear approximation replaes di�erenes with di�erentials. Although

∆y|x=c,
∆x=h

≈ dy|x=c,
dx=h

is the proper way to put it, often one abbreviates this as

∆y ≈ dy.

(But really this only orret if we also have ∆x = dx, or at least ∆x ≈ dx, beause that di�erene is also
replaed by a di�erential in the approximation.)

More generally, you an say that an equation involving di�erentials an be replaed by an approxi-

mate equation involving di�erenes. For example, if x5 + 2x = y5 + y, then 5x4 dx+ 2dx = 5y4 dy + dy
(by di�erentiating both sides), so 5x4 ∆x+ 2∆x ≈ 5y4 ∆y +∆y. Then if you are looking near the only

obvious solution, (x, y) = (0, 0), and you want to know the value of y when x = 0.3 (so ∆x = 0.3− 0 = 0.3,

you �nd 5(0)
4
(0.3) + 2(0.3) ≈ 5(0)

4
∆y +∆y, so ∆y ≈ 0.6; in other words, the new y-value is approximate-

ly 0 + 0.6 = 0.6. (The atual solution to (0.3)
5
+ 2(0.3) = y5 + y is y|x=0.3 ≈ 0.55 to 2 deimal plaes, but

I ouldn t do that by hand!)

It an be important to know how far o� an approximation might be, and this is basially given by

the next term in the sequene of approximations on the top of the page. To be spei�, the Mean-Value

Theorem (see pages 23 and 24) says that f(x)− f(c) (whih is the error in the onstant approximation

f(x) ≈ f(c)) annot be any larger in absolute value than |x− c| times the maximum value that f ′
takes

between x and c; similarly, f(x)− Lf,c(x) (whih is the error in the linear approximation near c) annot

be any larger in absolute value than |x− c|2 times half the maximum value that f ′′
takes between x and c.

However, the details of why this is so are best saved for the full treatment of the entire sequene of ap-

proximations that begins on page 45 of these notes.

3.12 Newton

′
s Method

If you want to solve an equation f(x) = 0, then the Intermediate Value Theorem may give you a way to

approximate the solution, but it is usually very ine�ient. The Newton�Raphson Method (or simply New-

ton s Method) is usually muh faster, although it doesn t always work. Here, you start with a guess x0,

then replae it with a (hopefully) better guess x1, and so on. These guesses are omputed in turn as fol-

lows:

x1 = x0 +
f(x0)

f ′(x0)
,

x2 = x1 +
f(x1)

f ′(x1)
,

x3 = x2 +
f(x2)

f ′(x2)
,

.

.

.

With any luk, none of these guesses will give f ′(x) = 0 (whih makes the next guess unde�ned) but even-

tually one will give f(x) ≈ 0 to as lose an approximation as one wants.

The Newton�Raphson Method is guaranteed to work under ertain onditions given by the Newton�

Kantorovih Theorem: If f is di�erentiable at a, f(a) and f ′(a) are nonzero, f is twie di�erentiable strit-

ly between a and a− 2f(a)/f ′(a), and

|f ′′(x)| ≤ |f ′(a)|2
2 |f(a)|

whenever x is stritly between a and a− 2f(a)/f ′(a), then Newton s Method will give a sequene of values

that are stritly between a and a− 2f(a)/f ′(a), and that onverge to a solution of f(x) = 0 in the sense

that the limit limn→∞ xn exists and f(limn→∞ xn) = 0.
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3.13 Advaned theorems

There are various theorems about derivatives and di�erentials that should seem obvious if you understand

the basi idea, but mathematiians have still proved them just to be safe.

For example, the derivative of a funtion is supposed to tell us how muh the output is hanging rel-

ative to the input. In partiular, if the derivative is positive, then the output should inrease when the

input inreases and derease when the input dereases; onversely, if the derivative is negative, then the

output should derease when the input inreases and derease when the input inreases. The �rst kind of

funtion is alled inreasing and the other is dereasing ; there are preise theorems that a funtion whose

derivative somewhere is positive or negative must be inreasing or dereasing (repsetively) near there.

Conversely, if a funtion has a loal extremum, then the derivative must be either zero or unde�ned there.

This fat is key to optimization (see page 25 and following).

Another group of theorems are the mean-value theorems. The point of a derivative is that it an be

approximated by a di�erene quotient; the mean-value theorems reverse this, and show how a di�erene

quotient must (under some onditions) be equal to a derivative somewhere nearby. All of these theorems

onsider a funtion f de�ned on at least an interval [a, b] (with a < b) suh that f is ontinuous on all of

[a, b] and di�erentiable at least between a and b (but possibly not at a or b themselves).

Spei�ally, Rolle s mean-value theorem says

If f(b)− f(a) = 0, then f ′(c) = 0 for some c between a and b.

Then Lagrange s mean-value theorem says

In any ase, f ′(c) =
f(b)− f(a)

b− a
for some c between a and b.

Finally, Cauhy s mean-value theorem says

If g is another funtion satisfying the same onditions as f and if furthermore g′ is never zero

between a and b, then
f ′(c)

g′(c)
=

f(b)− f(a)

g(b)− g(a)
for some c between a and b.

In Cauhy s mean-value theorem, I like to think of f(x) as u and g(x) as v, so that the left-hand side is

du/dv (evaluated at x = c) while the right-hand side is ∆u/∆v (evaluated at x = a and ∆x = b− a). La-
grange s theorem is the speial ase of Cauhy s theorem where g(x) is always simply x, and Rolle s theo-

rem is the speial ase of Lagrange s theorem where f(b)− f(a) = 0.

3.14 L

′
H�opital

′
s Rule

One important onsequene of Cauhy s mean-value theorem is L H�opital s Rule. This is a rule for lim-

its again, but it handles limits with forms suh as ∞÷∞ and 0÷ 0.
L H�opital s Rule applies when taking limits in any diretion D, if u and v are two quantities de�ned

in the diretion D, so long as either limD (1/v) = 0 (so limD v = ±∞ in other words) or both limD u and limD v
are zero. In that ase, if limD (du/dv) exists, then limD (u/v) also exists and the two limits are equal.

L H�opital s Rule an also be applied to limits with exponents by taking logarithms, applying the rule

diretly, and reversing the logarithms. It is therefore very versatile, although Taylor series (see page 49)

an do even more.

3.15 Conavity

There are various terms used when the values of a funtion, its average rates of hange, or its seond av-

erage rates of hange (the rates of hange of the rates of hange) are all positive (or negative), at least on

some interval. When the funtion is di�erentiable, and espeially when it s twie di�erentiable, there are

easier ways to desribe these. This is all summarized in the table below.

Page 27 of 53



Property of f : De�nition: If di�erentiable: If twie di�erentiable:

Positive f(a) > 0 � �

Negative f(a) < 0 � �

Inreasing

f(b)− f(a)

b− a
> 0 f ′(a) > 0 �

Dereasing

f(b)− f(a)

b− a
< 0 f ′(a) < 0 �

Conave upward

f(c)− f(b)

c− b
− f(b)− f(a)

b− a

c− a

f ′(b)− f ′(a)

b− a
> 0 f ′′(a) > 0

Conave downward

f(c)− f(b)

c− b
− f(b)− f(a)

b− a

c− a

f ′(b)− f ′(a)

b− a
< 0 f ′′(a) < 0

In all of these, the funtion f has the given property on some interval if the given ondition holds whenev-

er a, b, and c are distint numbers in that interval. (They must be distint to avoid division by zero.)

Generally, it s muh easier to work with the rightmost ondition for every property, but you an t do

that if the neessary derivatives don t exist. Even if the funtion isn t di�erentiable at all, it still makes

sense to say whether or not it s onave upward or downward.

Inidentally, here is some other terminology that you may see for these properties:

• Sometimes people use ≥ and ≤ in plae of > and <. If you want to be lear, you an use adverbs:

`stritly' for the de�nitions above (using > and <) or `weakly' for the versions with ≥ and ≤.
• Sometimes people put the word `monotone' in front of `inreasing' and `dereasing', even though it

really isn t neessary. (However, when people use this word, they are more likely to mean Æweakly�

too, even if they don t say so.)

• Alternatively, if the word `monotone' is used alone, then it means Æinreasing� (probably Æweakly in-

reasing�); the orresponding word for Ædereasing� (usually Æweakly dereasing�) is `antitone' (but

this word is fairly rare).

• If the word `onave' is used alone, then it means Æonave downard�; the orresponding word for

Æonave upward� is `onvex' (and this word is extremely ommon). Again, people who use this ter-

minology are more likely to mean Æweakly�.

3.16 Graphing

If you want to have a omplete graph of a funtion f , then these are all of the things that you should

make sure show up:

• x = 0, if f is de�ned at that point;

• x → −∞, if f is de�ned in that diretion;

• x → ∞, if f is de�ned in that diretion;

• x → c−, if f is de�ned in that diretion, whenever f is unde�ned or disontinuous at c;
• x → c+, if f is de�ned in that diretion, whenever f is unde�ned or disontinuous at c;
• x = c, if f is de�ned at that point, whenever f is unde�ned approahing c from either diretion (or

both);

• x = c, whenever f(c) = 0;
• x = c, whenever f ′

is unde�ned or disontinuous at c, if f is de�ned there;

• x = c, whenever f ′(c) = 0;
• x = c, whenever f ′′

is unde�ned or disontinuous at c, if f is de�ned there;

• x = c, whenever f ′′(c) = 0.
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This should be su�ient whenever f is a twie-di�erentiable funtion whose domain is an interval, or more

generally whenever f is pieewise twie-di�erentiable: a pieewise-de�ned funtion in whih the domain

of eah piee is an interval and in whih eah piee is twie-di�erentiable exept possibly at its endpoints.

(There are weirder funtions that an t be put in this form, but you shouldn t have to deal with them in

this lass.)

If you have a graphing alulator, then you may use it, but you still need to ensure that all of the fea-

tures listed above appear. At the very least, this may require you to adjust the alulator s graphing win-

dow. If you re graphing by hand, then you ll get the best results if you know the values or limits of f , f ′
,

and f ′′
for all of these, but you should at least get f for all of them and f ′

whenever you looked there be-

ause of something involving f ′
or f ′′

. You an also look at points in between these (assuming that f is

de�ned there).

3.17 Optimization

Literally, optimization is making something the best, but we use it in math to mean maximization,

whih is making something the biggest. (You an imagine that the thing that you re maximizing is a nu-

merial measure of how good the thing that you re optimizing is.) Essentially the same priniples apply

to minimization, whih is making something the smallest. (And pessimization is making something the

worst, although people don t use that term very muh.) A generi term for making something the largest

or smallest is extremization.

In theory, optimization is simply �nding absolute extrema, whih is most easily done for ontinuous

funtions on losed, bounded intervals. In that ase, the maximum and minimum must both exist, by the

Extreme Value Theorem, and eah of them must our at either the endpoint of the interval or where the

derivative of the funtion is either zero or unde�ned. However, pratial problems annot always be mod-

elled in this way, so we will need some more general tehniques.

The key priniple of applied optimization is this:

A quantity u an only take a maximum or minimum value when its di�erential du is zero or un-

de�ned.

If you write u as f(x), where f is a �xed di�erentiable funtion and x is a quantity whose range of possi-

ble values you already understand (typially an interval), then du = f ′(x) dx. So u an only take an ex-

treme value when its derivative (with respet to x) is zero or unde�ned or when you an no longer vary

x however you please (whih must our at the extreme values of x and typially only then). This rere-

ates the situation that I referred to above, �nding the extreme values of a funtion de�ned on an interval.

However, the priniple that du is zero or unde�ned applies even when u is not expliitly given as a fun-

tion of anything else.

Be areful, beause u might not have a maximum or minimum value! Assuming that u varies ontinu-

ously (whih it must if Callulus is to be useful at all), then it must have a maximum and minimum value

whenever the range of possibilities is ompat ; this means that if you pass ontinuously through the possi-

bilities in any way, then you are always approahing some limiting possibility. (In terms of u = f(x), this
is the ase when f is ontinuous and its domain, the range of possible values of x, is a losed and bounded

interval.)

However, if the range of possibilities heads o� to in�nity in some way, or if there is an edge ase that s

not quite possible to reah, then you also have to take a limit to see what value u is approahing. (In

terms of u = f(x), if the interval is open or unbounded at either end, then there is a diretion in whih

x ould vary but in whih there is no limiting value of x in the range of possibilities.) If any suh limit

is larger than every value that u atually reahes (whih inludes the possibility that a limit is ∞), then

u has no maximum value; if any suh limit is smaller than every value that u atually reahes (whih in-

ludes the possibility that a limit is −∞), then u has no minimum value.

So in the end, you look at these possibilities:

• when the derivative of u is zero or unde�ned,

• the extreme edge ases, and

• the limits approahing impossible limiting ases.
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The largest value of u that you �nd in this way (regardless of whether this value is atually attained or

is only approahed in the limit) is alled the supremum of u; similarly, the smallest value of u that you

�nd is alled the in�mum of u. If u atually takes the value of its supremum, then that same value is also

the maximum of u; but if u only approahes its supremum in a limit, then it has no maximum. Similarly,

if u atually takes the value of its in�mum, then that same value is also the minimum of u; but if u only

approahes its in�mum in a limit, then it has no minimum.

Here is a typial problem: The hypotenuse of a right triangle (maybe it s a ladder leaning against a

wall) is �xed at 20 feet, but the other two sides of the triangle ould be anything. Still, sine it s a right

triangle, we know that x2 + y2 = 202, where x and y are the lengths of legs of the triangle. Di�erentiat-

ing this, 2x dx+ 2y dy = 0. Now suppose that we want to maximize or minimize the area of this trian-

gle. Sine it s a right triangle, the area is A = 1
2xy, so dA = 1

2y dx+ 1
2x dy. If this is zero, then

1
2y dx+

1
2x dy = 0, to go along with the other equation 2x dx+ 2y dy = 0.

The equations at this point will always be linear in the di�erentials, so think of this is a system of

linear equations in the variables dx and dy. There are various methods for solving systems of linear equa-

tions; I ll use the method of addition (aka elimination), but any other method should work just as well.

So

1
2y dx+ 1

2x dy = 0 beomes 2xy dx+ 2x2 dy = 0 (multiplying both sides by 4x), while 2x dx+ 2y dy = 0

beomes 2xy dx+ 2y2 dy = 0 (multiplying both sides by y). Subtrating these equations gives (2x2 − 2y2) dy =
0, so either dy = 0 or x2 = y2. Now, x and y an hange freely as long as they re positive, but we have

limiting ases: x → 0+ and y → 0+. Sine x2 + y2 = 400, we see that x2 → 400 as y → 0; sine x is posi-

tive, this means that x → 20 as y → 0. Similarly, y → 20 as x → 0. In those ases, A = 1
2xy → 0. On the

other hand, if x2 = y2, then x = y (sine they are both positive), so x, y = 10
√
2, sine x2 + y2 = 400. In

that ase, A = 1
2xy = 100.

So the largest area is 100 square feet, and while there is no smallest area, the area an get arbitrarily

small with a limit of 0.

3.18 Eonomi appliations

In word problems in eonomis or �nane, a few quantities arise regularly, whih you should know about.

• Quantity in this ontext has a spei� meaning: the amount of a good or servie made and/or sold

in a given period of time. Quantity is thus measured in suh units as pounds per week, items per

year, or litres per hour. Quantity is variously denoted q or x.
• Prie (or unit prie) is the amount of money reeived for a given amount of goods or servies. So

prie is measured in units suh as dollars per pound or euros per item. Prie is denoted p, a lowerase

letter.

• Revenue is the amount of money reeived for goods or servies in a given period of time. Revenue is

measured in dollars per week, euros per year, et. Revenue is denoted R, and we have this equation:

R = qp.

(Notie that the units make sense in this equation; amount over time, multiplied by money over amount,

beomes money over time.)

• Cost is the amount of money that the business has to spend (in a given period of time) in order to

produe and distribute their goods and servies. (In this terminology, ost is ompletely di�erent

from prie.) Like revenue, ost is measured in units of money over time.

• Finally, pro�t is the amount of money that the business makes and keeps in a given period of time.

Unlike everything else here, it makes sense for pro�t to be negative. Pro�t is denoted P , an upperase

letter, and we have another equation:

P = R− C.

In business, you generally want to maximize pro�t: make it not only positive but as large as possible.

Even if you don t want to maximize pro�t as normally measured (beause you are about something else

besides money), eonomists typially try to alulate whatever else you are about and still say that you

maximize pro�t (in a generalized sense).
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For any of these quantities, we an disuss their average or marginal values. In this ontext, the aver-

age pro�t/ost/et is the pro�t/ost/et divided by the quantity:

P̄ =
P

q
, C̄ =

C

q
, . . . .

(As you an see, a bar is used to indiate this ratio. Be areful; when we get to appliations of integrals,

this bar will be used to denote an average in a di�erent way.) On the other hand, the marginal prof-

it/ost/et is the derivative of pro�t/ost/et with respet to quantity:

P ′ =
dP

dq
, C ′ =

dC

dq
, . . . .

(As you an see, a prime tik is used to indiate this derivative, whih is safe in ontext beause it always

means the derivative respet to q. For a derivative with respet to time, whih is also important in this

ontext even though we aren t doing any examples of that in this lass, a dot may be used instead.) Al-

though the units for a marginal or average quantity are the same, they represent di�erent things!

Finally, people also speak of the marginal average pro�t/ost/et:

P̄ ′ =
d(P/q)

dq
=

qP ′ − P

q2
= P ′ − P̄ ,

C̄ ′ =
d(C/q)

dq
=

qC ′ − C

q2
= C ′ − C̄,

.

.

.

The marginal pro�t is partiularly important, sine it must be zero when pro�t is maximized (as long as

the maximum pro�t ours when it is still possible to vary the quantity in any way desired); and sine the

marginal marginal pro�t (the seond derivative of pro�t with respet to quantity) is typially negative,

the pro�t really will be maximized when the marginal pro�t is zero. However, in the absene of informa-

tion about the revenue, there is a rule of thumb that one should minimize the average ost instead, whih

means �nding where the marginal average ost is zero.
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4 Integrals

This is a summary of the onepts of integral alulus.

4.1 De�nite integrals

Just as the di�erential of a �nite quantity is an in�nitesimal (in�nitely small) hange in that quantity, so

the de�nite integral of an in�nitesimal quantity is the sum of in�nitely many values of that quantity,

giving a �nite result. If x and y are standard quantities (neither in�nitely large nor in�ntely small), then

y dx is a typial in�nitesimal quantity. (An expression like this is alled a di�erential form.) If we add this

up from the point where x = a to the point where x = b, then we get the de�nite integral

w b

x=a
y dx.

As long as the same variable x is used throughout, then it s safe to abbreviate this as

w b

a
y dx.

For example,

r 5

3
(2t+ 4) dt is the sum, as t varies smoothly from 3 to 5, of the produt of 2t+ 4 and

dt (the in�nitesimal hange in t) at eah stage along the way. We an think of this produt as giving the

area of a retangle whose height is 2t+ 4 and whose width is dt; if we line these retangles up side by side,

then they ombine to give a trapezoid:
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We an �nd out the area of this trapezoid using geometry, sine its width is 5− 3 = 2 and its height varies

linearly from 2(3) + 4 = 10 to 2(5) + 4 = 14. Therefore,

w 5

3
(2t+ 4) dt =

10 + 14

2
· 2 = 24.

Normally, you an t evaluate an integral by drawing a piture like this; I ll ome bak to how we an

alulate it after a brief digression.
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4.2 Antidi�erentials

If du = y dx, then y dx is the di�erential of u, as you know. We also say that u is an antidi�erential

of y dx. However, u is not the only antidi�erential of y dx; if C is any onstant, then d(u+ C) = y dx too,

so u+ C is also an antidi�erential of y dx. However, for a ontinuously de�ned quantity, there is no other

antidi�erential of y dx. Even if there are gaps in the de�nition of the quantity, we an say that u+ C is

an antidi�erential of du if and only if C is a loal onstant, meaning that it an hange value only aross

a gap where u is unde�ned. (Ultimately, this is a onsequene of the theorem that if the derivative of a

funtion on an interval is always zero, then that funtion must be a onstant; the relevant funtion here is

the di�erene between the funtions that give any two possible antidi�erentials.)

Antidi�erentials are denoted by `

r
', so we have

w
du = u+ C

by de�nition. (This looks similar to the notation for a de�nite integral, whih makes sense reasons that

will be explained below, but you an tell the di�erene beause there are no bounds attahed to the sym-

bol.) For example,

d(t2 + 4t) = 2t dt+ 4dt = (2t+ 4) dt,

so w
(2t+ 4) dt =

w
d(t2 + 4t) = t2 + 4t+ C.

As 2t+ 4 is the derivative of t2 + 4t with respet to t, we also say that t2 + 4t is an antiderivative of

2t+ 4 with respet to t. An antidi�erential or antiderivative is also alled an inde�nite integral; so `in-

de�nite integral of (t2 + 4) dt' (antidi�erential) and `inde�nite integral of t2 + 4 with respet to t' (antide-
rivative) both mean

r
(t2 + 4) dt.

To �nd antidi�erentials (or antiderivatives), we must run the rules for di�erentials (and derivatives)

bakwards. This is often a subtle proess, whih I ll return to after a brief digression.

4.3 The Fundamental Theorem of Calulus

The Fundamental Theorem of Calulus relates de�nite and inde�nite integrals. There are two parts:

1. d
(w b

t=a
f(t) dt

)

= f(b) db− f(a) da;

2.

w b

t=a
df(t) = f(b)− f(a).

The �rst part applies whenever f is a ontinuous funtion (assuming that a and b are di�erentiable quan-
tities); in partiular, it laims that the integral exists and is di�erentiable. The seond part applies when-

ever f is a di�erentiable funtion (assuming that t is a di�erentiable quantity); in partiular, it laims that

the integral exists.

Although both of these parts refer diretly to de�nite integrals, inde�nite integrals (antidi�erentials)

appear impliitly beause of the presene of the di�erentials. Spei�ally, the �rst part laims that the

de�nite integral that appears in it is an antidi�erential of the di�erential form on its right-hand side, and

the seond part shows how to evaluate a de�nite integral of a di�erential form whose antidi�erential is

known.

If you want to express these without refering to the funtion f , then you an write them thus:

1. d
(w b

a
ω
)

= ω|ba;

2.

w b

a
du = u|ba.

Here, I m using ω to stand for an entire di�erential form (for whih people often use Greek letters) and

u|ba is short for u|b − u|a. These basially say that d and

r
anel as long as you move the bounds on the

integral into bounds on a di�erene.

It s the seond part of the theorem that we use the most. If you want to evaluate a de�nite integralr b

a
y dx, then you should �rst �gure out the inde�nite integral

r
y dx. If the answer to this is u (or more

generally u+ C), then this means that y dx = du; that is, u is an antidi�erential of y dx. Therefore,
r b

x=a
y dx =
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r b

x=a
du, and the FTC tells us that this is equal to u|bx=a. As this last expression is simply a di�erene,

you an �gure it out using simple algebra.

For example, onsider w 5

t=3
(2t+ 4) dt.

In the last setion, we saw that

r
(2t+ 4) dt = t2 + 4t+ C; in other words, (2t+ 4) dt = d(t2 + 4t). There-

fore, w 5

3
(2t+ 4) dt =

w 5

3
d(t2 + 4t) = (t2 + 4t)|53

=
Ä

(5)
2
+ 4(5)

ä

−
Ä

(3)
2
+ 4(3)

ä

= (45)− (21) = 24.

(Notie that this is the same answer as when I did this using geometry!)

This also explains why the same term `integral' and symbol `

r
' are used for both the de�nite integral

(a sum of in�nitely small quantities) and the inde�nite integral (the antidi�erential). They at �rst appear

to be ompletely di�erent onepts, but in reality they are losely related, through the Fundamental Theo-

rem of Calulus.

4.4 Integration tehniques

This leaves us with one problem: how do we �nd inde�nite integrals?

Eah rule for di�erentiation gives us a rule for integration. In the table below, I have some rules for

di�erentiation (all of whih you should know by now), together with orresponding rules for integration:

d(u+ v) = du+ dv,
w
(y + z) dx =

w
y dx+

w
z dx;

d(ku) = k du (when k is onstant),

w
ky dx = k

w
y dx (when k is onstant);

d(uv) = v du+ u dv,
w
u dv = uv −

w
v du;

d(un) = nun−1 du (when n is onstant),

w
um du =

1

m+ 1
um+1 + C (when m 6= −1 is onstant);

d(eu) = eu du,
w
eu du = eu + C;

d(ln |u|) = 1

u
du,

w 1

u
du = ln |u|+ C;

d(sinu) = cosu du,
w
cosu du = sinu+ C;

d(cosu) = − sinu du,
w
sinu du = − cosu+ C;

et.

Using these rules, you an work out all of the integrals in the textbook through Chapter 6, and then some.

For example, to �nd

r
(2t+ 4) dt:

w
(2t+ 4) dt =

w
2t dt+

w
4 dt = 2

w
t1 dt+ 4

w
dt = 2

Å

1

2
t2
ã

+ 4t+ C = t2 + 4t+ C.

This is the same answer as we got before, but this time I didn t have to guess the answer and get luky; I

was able to atually alulate it. That s how you re going to be doing most of the problems.

For more ompliated integrals, there are fanier tehniques. Rather than learn all of these, you an

program them into a omputer. There are even free websites that will do this for you!
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4.5 Summary

To �nd the inde�nite integral

r
y dx, you need to use integration tehniques; your answer will still have the

variable in it and should end with a new loal-onstant term C. To �nd the de�nite integral

r b

a
y dx, �rst

�nd the inde�nite integral and then take a di�erene; assuming a and b are onstants, your answer will
also be onstant (and the C will disappear).

So for example, to �nd the de�nite integral of 2t+ 4 with respet to t from 3 to 5:

w 5

3
(2t+ 4) dt =

w 5

3
(2t1 dt+ 4dt) =

Å

2

Å

1

2
t2
ã

+ 4t

ã

∣

∣

∣

∣

5

3

= (t2 + 4t)|53 = 45− 21 = 24.

This is simply a ombination of alulations that I did earlier, to �nd the inde�nite integral and to apply

the ft.

4.6 Semide�nite integrals

Besides the de�nite integral

r b

a
f(x) dx and the inde�nite integral

r
f(x) dx, there is also a semide�nite

integral

r
a
f(x) dx. While the de�nite integral works out to a spei� value (as long as f , a, and b are

spei�ed), the inde�nite and semide�nite integrals still have the variable x in them. On the other hand,

while the inde�nite integral depends on an arbitrary C, the de�nite and semide�nite integrals don t have

this. So the semide�nite integral �ts in between the other two kinds.

Here is one way to de�ne it: w
x=a

f(x) dx =
w x

t=a
f(t) dt.

That is, introdue a new variable t and use the old variable x as the upper bound of a de�nite integal.

The Seond Fundamental Theorem of Calulus,

w b

x=a
f(x) dx =

Ä

w
f(x) dx

ä

∣

∣

∣

b

x=a
=
Ä

w
f(x) dx

ä

∣

∣

∣

x=b
−
Ä

w
f(x) dx

ä

∣

∣

∣

x=a
,

also tells us how to evaluate semide�nite integrals:

w
x=a

f(x) dx =
w
f(x) dx−

Ä

w
f(x) dx

ä

∣

∣

∣

x=a
.

In other words, work out the inde�nite integral as usual; then, instead of evaluating this at two values of

the variable before subtrating, evalute it at one value and keep the variable in the other expression (then

subtrat). For example,

w
x=1

x dx =
x2

2
−
Å

x2

2

ã

∣

∣

∣

∣

x=1

=
x2

2
−
(

(1)
2

2

)

=
1

2
x2 − 1

2
.

(You an probably skip the step with |x=1 in it, sine one you ve written down x2/2 before the minus

sign, you an immediately plug in 1 for x to get (1)
2
¿

2 after the minus sign.)

4.7 Integration by parts

Integration by parts is based on the Produt Rule for di�erentiation. In terms of di�erentials, the Produt

Rule says that d(uv) = v du+ u dv. Taking inde�nite integrals of both sides and rearranging the terms

slightly, this beomes w
u dv = uv −

w
v du.

Unlike integration by substitution, you don t rewrite the problem in terms of u (nor v). Instead, you iden-

tify suitable u and v and their di�erentials and then write out the equation above in terms of x (or what-

ever your variable is).
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You want to pik u and v so that

r
u dv is the integral that you are about, whih means splitting up

the fators of the integrand, some into u and some into dv. One you know u and dv, you an �nd du
and v, at least if you know how to integrate whatever dv is. (When you do this integration of dv to get

v, you have a hoie up to a loal onstant; you re deiding what v is, so just pik the simplest expression.)

If you split things up well, then

r
v du will be simpler than what you started with.

Here is my advie on how to split fators into u and dv so that integration by parts will make the

next integral easier. The items on the top of the list are the best hoies for dv, and the items on the bot-

tom are the best hoies for u. Put as many fators as you an into dv, starting at the top of this list and

working your way to the bottom, as long as you still have something that you know how to integrate to

get v. Then put whatever fators are left over into u.

• dx (this must go into dv),
• ex and other exponential expressions,

• sinx and other trigonometri expressions,

• polynomials and other algebrai expressions,

• lnx and other logarithmi expressions,

• asinx = sin−1 x and other inverse trigonometri expressions.

In ompliated ases, you may have to use integration by parts more than one. Just keep going until

either you get something that you an handle or you get bak to where you started. In the latter ase, you

an set up an equation to solve for your integral.
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5 Di�erential equations

A di�erential equation is an equation with di�erentials or derivatives in it. Here are three examples of

di�erential equations:

f ′(x) = 3f(x);

dy

dx
= 3y;

dy = 3y dx.

In fat, these three examples are all basially equivalent. If you are given the �rst of these, then you should

make up a name for f(x), say y, and turn the �rst equation into the middle one. And in the middle equa-

tion, you should lear frations to turn it into the last one. (But any of these might be the original form,

depending on how the equation is thought up in the �rst plae.)

To atually solve this equation, you an use the tehnique of separation of variables. After reah-

ing the last equation, notie that x only appears on the right-hand side but y appears on both sides. If

you divide both sides by y, however, then y appears only on the left-hand side. (If y = 0, then dividing

by y is invalid; I ll ome bak to that later.) Then the variables are separated:

dy

y
= 3dx.

(If you re ever unsure whih side to put whih variable on, then try to put the di�erentials in the numera-

tors of any frations. In this example, 1/dx = 3y/dy would have the variables separated just as muh, but

it would be less useful, beause the next step, below, wouldn t work.)

Now take the inde�nite integral of eah side of the equation:

w dy

y
=

w
3 dx;

ln |y|+ C1 = 3x+ C2;

ln |y| = 3x+ C2 − C1.

Eah integral gives an arbitrary onstant, and I subtrated to put them both on the right-hand side. How-

ever, sine C2 − C1 ould itself be any onstant, you an just write this as

ln |y| = 3x+ C.

In pratie, you an skip the other steps with onstants and just remember to tak a onstant onto the

last integral in the equation.

We re not �nished; this equation is no longer a di�erential equation, but it also hasn t been solved for

anything. If we want to solve it for y, then we still need to do some algebra to get y by itself on its side of

the equation:

|y| = e3x+C
;

y = ±e3x+C
.

(If you re given an equation in x and y, then it s a good bet that they want you to solve for y; if you re
given an equation like the �rst example with a funtion in it, then it s a good bet that they want you to

solve for the funtion. But in priniple, you ould solve any of these equations for x instead.)

There is one mistake here, whih is the step where I divided by y. If y = 0, then this is invalid. Fur-

thermore, if y = 0 always, then the equation is true, beause then both sides of the original equation (in

any of the three forms) are 0. (This sort of speial exeption is fairly ommon with di�erential equations.)

So a omplete solution is

y = ±e3x+C
or y = 0.
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You an make the �nal solution look a bit nier by writing ±e3x+C
as ±eCe3x and then making up a name

for ±eC , say P . Sine eC ould be any positive number, P ould be any positive or negative number; the

exeption y = 0 is aptured by P = 0. So the niest form of the �nal solution is

y = P e3x,

where P is an arbitrary onstant. (However, you shouldn t always expet to be able to do a simplifying

trik like that.)

Of ourse, if the original form of the equation is the �rst example, then you should write this solution

as

f(x) = P e3x.

5.1 Initial-value problems

An initial-value problem onsists of a di�erential equation together with enough data to determine the

arbitrary onstants. Here are three examples of initial-value problems:

f ′(x) = 3f(x), f(0) = 5;

dy

dx
= 3y, y|x=0 = 5;

dy = 3y dx, y|x=0 = 5.

Again, these three examples are all basially equivalent; if y = f(x), then y|x=0 means f(0).
There are two ways to solve an initial-value problem. One is to ignore the initial value and just solve

the di�erential equation, at �rst. In this example, that gives us

y = P e3x,

as you ve seen. Then you put in the given values, whih in this ase gives

5 = P e3(0).

Now you an solve for P :
5 = P (1);

P = 5.

Therefore, the �nal answer to the initial-value problem is

y = 5e3x.

(Again, if the original form of the equation is the �rst example, then you should write this solution as

f(x) = 5e3x.)
Another tehnique is to solve the entire problem at one with the help of semide�nite integrals (page 31).

Let s solve the example

dy = 3y dx, y|x=0 = 5

using semide�nite integrals. Again, separate the variables:

dy

y
= 3dx.

Now instead of taking inde�nite integrals of both sides, take semide�nite integrals, using the initial value

to guarantee that you re doing the same thing to eah side even though it s being done using di�erent vari-

ables. In this ase, sine y = 5 when x = 0, a semide�nite integral starting at y = 5 is the same operation

as a semide�nite integral starting at x = 0, so

w
y=5

dy

y
=

w
x=0

3 dx.
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Evaluating these using the ft gives

ln |y| − ln |5| = 3x− 3(0).

So ompared to the integration without the initial value, the di�erene is that we know whih spei� on-

stants to use in eah integral. Now again, solve for y to �nish:

ln |y| = 3x− 0 + ln 5;

|y| = e3x+ln 5
;

y = ±5e3x.

This is not ompletely perfet, beause of the ±, but we an �gure this out by heking whether y really

is 5 when x = 0; this will only be true if the sign is +. Finally, sine we did again divide by y while solv-

ing this, hek to make sure that y is never zero in the solution; it s not, so the �nal answer is

y = 5e3x.

Of ourse, this is the same solution as we got before, but this time we got the entire solution all at

one without having to �rst get a solution with an arbitrary onstant and then solving for the onstant.

You may solve intial-value problems using whihever method you prefer.

5.2 Integrals as solutions to equations

Although we normally solve a di�erential equation by taking integrals, you an also think of an integral

as a solution to a di�erential equation. For example, the inde�nite integral

r
f(x) dx is the solution to

the di�erential equation dy/dx = f(x), and the semide�nite integral

r
x=a

f(x) dx is the solution to the

initial-value problem (dy/dx = f(x), y|x=a = 0). More generally, the solution to the initial-value prob-

lem (dy/dx = f(x), y|x=a = c) is
r
x=a

f(x) dx+ c. These kinds of initial-value problems are in Setions 4.8

and 5.5 of the textbook and are overed in Calulus 1; more general di�erential equations and initial-value

problems are in Setion 7.2 and are overed in Calulus 2.

(There are even more general di�erential equations than I have disussed here, ones in whih it is im-

possible the separate the variables in the equation; some of these are overed in Chapters 16 and 17 of the

online-only version of the textbook. Yet more general di�erential equations are overed in S s ourse on

di�erential equations, whih is basially Calulus 4, but using a di�erent textbook dediated to that sub-

jet. Beyond that, there are graduate-level ourses that you ould take at a university; in fat, the study

of di�erential equations is a major �eld of ative researh in mathematis. We are very far from knowing

how to solve them all!)
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6 Sequenes and series

A sequene is a funtion whose domain onsists only of integers. (It s not neessary that all integers be-

long to the domain, just that nothing else does.) To emphasize that we re onsidering a sequene, people

often write fn instead of f(n) when f is a sequene (and n is an integer in its domain). In fat, `f ' is not
a very ommon name for a sequene; `a' and `x' (or letters near them) are muh more ommon. Similarly,

the argument of a sequene is usually denoted by a letter near the middle of the alphabet (usually between

`i' and `n'), sine these letters are often used for integers. (Still, as with any other variable, you an use

any letter that you like in priniple.) There is also some redundant terminology: instead of speaking of the

input (or argument) and output (or value) of a funtion, we speak of an index and term of a sequene.

For example, if an = (−2)
n
, then the term with index 3 is a3 = (−2)

3
= −8. (Sometimes people say that 8

is the 3rd term, but this really only works if an is unde�ned when n < 1.)
Sine Calulus is about ontinuously varying quantities and a sequene has only disrete values (at

most one for eah integer), there s not muh Calulus to be done with a sequene. Nevertheless, there is

some: you an onsider the limit of a sqeuene approahing in�nity (or negative in�nity). That is, while

lim
n→c

an (for �nite c),
dan
dn

, and

w
an dn don t make sense, nevertheless lim

n→∞
an and lim

n→−∞
an an make

sense. I ll fous on the �rst of these, whih you an all simply the limit of the sequene, beause many

of our sequenes will only be de�ned at natural numbers; however, limits approahing negative in�nity re-

ally aren t muh di�erent.

Sometimes it s onvenient to think of a sequene as the restrition to integers of some more general

funtion. For example, if you re working with the sequene an = 3n2
, then you an think of the funtion

f(x) = 3x2
; while f is de�ned for all real numbers and a is de�ned only for integers, otherwise they are

the same thing. Sine lim
x→∞

f(x) = ∞, this tells us that lim
n→∞

an = ∞ too. So most of the time, you an

work out the limit of a sequene in the same way that you work out any other limit approahing in�ni-

ty. If an = f(n) for n an integer and f has a limit (possibly in�nite) approahing in�nity, then a has the

same limit; this is a theorem. However, it s possible that a has a limit even when f does not, for example

if f(x) = sin (πx). This has no limit as x → ∞, sine all values between −1 and 1 are taken for arbitrarily

large values of x. When n is an integer, however, sin (πn) = 0, so the limit of the sequene an = sin (πn)
(whih is really just the sequene an = 0) is 0.

There are some more systemati ways of turning a sequene into a funtion that s de�ned everywhere

(or almost everywhere). These involve the �oor and eiling operations: the �oor ⌊x⌋ of a real number x
is the largest integer that s not larger than x, and the eiling ⌈x⌉ of x is the smallest integer that s not

smaller than x. Ever sine you �rst learnt to round numbers up and down, you ve been using these opera-

tions, even if you didn t have names for them; for example, ⌊2.37⌋ = 2 (round down to the nearest integer),

and ⌈2.37⌉ = 3 (round up to the nearest integer). Be areful with negative numbers: ⌊−2.37⌋ = −3, and
⌈−2.37⌉ = −2. An important inequality about �oors and eilings is

⌊x⌋ ≤ x ≤ ⌈x⌉.

As long as x is itself frational (that is not an integer), then

⌊x⌋ < x < ⌈x⌉,

and in that ase you also have

⌊x⌋+ 1 = ⌈x⌉.
(But integers are an exeption; if x is an integer, then ⌊x⌋, x, and ⌈x⌉ are all equal to eah other.)

Using these operations, we an onvert any sequene into a funtion de�ned more generally: if a is a

sequene, then we an onsider a⌊x⌋ and a⌈x⌉. If a is de�ned for all integers, then these will be de�ned for

all real values of x; even if a isn t de�ned for all integers, still a⌊x⌋ and a⌈x⌉ will be de�ned for many more

real numbers. And now we have this theorem:

lim
x→∞

a⌊x⌋ = lim
n→∞

an = lim
x→∞

a⌈x⌉.
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These funtions a⌊x⌋ and a⌈x⌉ are unusual, sine they are (for most sequenes) disontinuous at every inte-

ger, but they an be handy to think about.

You an see a piture of these in Figure 9.11 on page 501 of the textbook. (The textbook is using this

piture for a di�erent purpose, although it is related, as you ll see later on.) In this piture, the book be-

gins with a funtion f and then onstruts a sequene a out of it by de�ning an = f(n). Then on the top

(Figure 9.11.a), it shows the graph of y = f(x) in blue along with a graph of y = a⌊x⌋ = f(⌊x⌋) in magen-

ta; while on the bottom (Figure 9.11.b), it shows a graph of y = f(x) in blue again but now with a graph

of y = a⌈x⌉ = f(⌈x⌉) in magenta. You ll notie that the sequene and all three of the other funtions tend

to the same limit (whih in this ase is 0). Even if the textbook had started with a funtion f that did

not onverge to a limit, the sequene and the two funtions de�ned by �oor and eiling would still all on-

verge to the same thing.

6.1 Series

I wrote above that you an t do muh Calulus on sequenes; in partiular, I remarked that the deriva-

tive

dan
dn

and integral

w
an dn don t make sense. Ultimately, this is beause dn, an in�nitesimal (in�nitely

small) but non-zero hange in n, doesn t make sense when n takes only integer values; the smallest possi-

ble non-zero hange in n is a hange by 1, whih is not in�nitely small.

But there is something analogous to derivatives and integrals. The analogue to derivatives is the dif-

ferene ∆nan = an+1 − an, whih is the di�erene of an with respet to n. (For example, ∆n(3n) =

3(n+ 1)− 3n = 3, and ∆m(m2) = (m+ 1)
2 −m2 = 2m+ 1, whih means that if n = m2

, then ∆mn =
2
√
n+ 1.) Whereas the derivative is de�ned as a limit of di�erene quotients, the di�erene simply is a

di�erene quotient where the hange in n is ∆nn = 1. (Unfortunately, sequenes do not have an analogue

of the di�erential that will take are of hanging from one variable to another. This is beause ∆un ·∆mu
bears no partiular relationship with ∆mn, even assuming that all of the values of u are integers.)

The analogue to an integral is a series, whih is the result of adding up some of the terms of a se-

quene. (This word an be onfusing, in two ways. The �rst is a quirk of grammar: the plural of `series'

is just `series' again. You an say `serieses' as the plural, although this is nonstandard, but using `serie' as

the singular is just plain wrong. The other onfusing thing is that, in ordinary language, `sequene' and

`series' mean basially the same thing; but in mathematis, a sequene is the more basi onept, being

essentially just a list of numbers or other quantities, while a series is a sum that you build out of a se-

quene.)

Like di�erenes, a �nite series has no Calulus in it; you just add up some numbers. For example,

7
∑

n=3

(n2 + 1) =
Ä

(3)
2
+ 1
ä

+
Ä

(4)
2
+ 1
ä

+
Ä

(5)
2
+ 1
ä

+
Ä

(6)
2
+ 1
ä

+
Ä

(7)
2
+ 1
ä

= 10 + 17 + 26 + 37 + 50 = 140.

This means the sum of all of the values of n2 + 1 as n runs from 3 to 7, taking only integer values along

the way. That is, it s the sum of all of the values of n2 + 1 as n takes the values 3, 4, 5, 6, and 7, whih is

what I alulated.

Stritly speaking, this is analogous to a proper integral suh as

w 8

x=3
(x2 + 1) dx. Atually, this is more

than just an analogy: a series is an integral, albeit one whose Calulus ontent is trivial. Spei�ally,

j
∑

n=i

an =
w j+1

x=i
a⌊x⌋ dx =

w j

x=i−1
a⌈x⌉ dx.

(So in this example,

∑7
n=3 (n

2 + 1) =
r 8

x=3

Ä

⌊x⌋2 + 1
ä

dx.) Sine these are integrals of pieewise-onstant

funtions, working them out is easy and just results in the original sum. So you don t want to evaluate a

series by turning it into an integral; still, it an be handy to know that this an be done, beuase we know

a lot of theorems about integrals that now automatially apply to series.

Page 41 of 53



We traditionally speak of a sum from i = a to i = b, written
∑i=b

i=a or simply

∑b

i=a, where b− a is a

whole number (0, 1, 2, . . .); assuming for simpliity that a is an integer (so that b is also), this sum overs

every integer i that satis�es the inequality a ≤ i ≤ b, or in other words all of the integers in the interval

[a, b].
In some ways, it s better to think of suh a sum as running from i = a to i = b+ 1, but with the last

item not quite inluded; that is, the sum overs every integer i that satis�es the inequality a ≤ i < b+ 1,
or in other words all of the integers in the interval [a, b+ 1). Of ourse, from this perspetive, it s not the

number b that matters but the number b+ 1; if we all this B, then we an write

∑

a≤i<B for what is nor-

mally written as

∑b

i=a. Note also that it makes perfet sense to have B = a (in other words, b− a = −1);
then we are adding up no terms, and the sum is 0.

One nie onsequene is that the number of terms in the sum is simply B − a rather than b− a+ 1.
Perhaps more importantly, we have this theorem:

∑

A≤i<B

+
∑

B≤i<C

=
∑

A≤i<C

,

whih looks nier than

b
∑

i=a

+
c

∑

i=b+1

=
c

∑

i=a

.

The upshot of all of this is that, when you see (for example) a sum as i runs from 2 to 5, you might want

to think of it as a sum over 2 ≤ i < 6 instead.

Some of the formulas for summing ubi polynomials are slightly simpler. With the traditional num-

bering, we have these (from pages 295 and 296 of the textbook):

b
∑

i=0

c = c(b+ 1) if c is onstant;

b
∑

i=0

i =
1

2
b(b+ 1) =

Å

b+ 1

2

ã

;

b
∑

i=0

i2 =
1

6
b(b+ 1)(2b+ 1);

b
∑

i=0

i3 =
1

4
b2(b+ 1)

2
=

Å

b+ 1

2

ã2

.

(Here,

(n

r

)

=
n!

r! (n− r)!
,

where n! = n(n− 1)(n− 2) · · · (3)(2)(1), is an expression that you don t need to learn if you don t want to

but whih is used in many mathematial formulas.)

With the o�-by-1 numbering, we have these:

∑

0≤i<B

c = cB if c is onstant;

∑

0≤i<B

i =
1

2
B(B − 1) =

Å

B

2

ã

;

∑

0≤i<B

i2 =
1

6
B(B − 1)(2B − 1);

∑

0≤i<B

i3 =
1

4
B2(B − 1)

2
=

Å

B

2

ã2

.
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Espeially if you use

(B
2

)

, then some of these are simpler.

It s also handy to have more general formulas starting at an arbitrary plae rather than at i = 0 or 1.
With the traditional numbering, we have these:

b
∑

i=a

c = c(b− a+ 1) if c is onstant;

b
∑

i=a

i =
1

2
(a+ b)(b− a+ 1);

b
∑

i=a

i2 =
1

6
(2a2 + 2ab+ 2b2 − a+ b)(b− a+ 1);

b
∑

i=a

i3 =
1

4
(a2 + b2 − a+ b)(a+ b)(b− a+ 1).

With the o�-by-1 numbering, we have these:

∑

A≤i<B

c = c(B −A) if c is onstant;

∑

A≤i<B

i =
1

2
(B −A)(A+B − 1);

∑

A≤i<B

i2 =
1

6
(B −A)(2A2 + 2AB + 2B2 − 3A− 3B + 1);

∑

A≤i<B

i3 =
1

4
(B −A)(A+B − 1)(A2 +B2 −A−B).

These are now about equally ompliated.

6.2 In�nite series

Besides this, we also onsider in�nite series, whih are analogous to in�nite improper integrals. Just asw ∞

x=a
f(x) dx is de�ned as lim

b→∞

w b

x=a
f(x) dx, so an in�nite series is de�ned as a limit of �nite series:

∞
∑

n=i

an = lim
j→∞

j
∑

n=i

an,

or equivalently limJ→∞
∑

i≤n<J an; the �nite sum
∑j

n=i an (or

∑

i≤n<J an) is alled a partial sum of the

series. (As with in�nite integrals, you an also replae i with −∞, but we won t be doing that very often.)

Now there is a limit (and hene Calulus) involved even for sequenes. If this limit onverges (to a �nite

real number), then we say that the in�nite series onverges (to that number); otherwise, it diverges.

Sometimes it s useful to say that it diverges to ∞ or −∞ (if it does), but this still ounts as divergene.

You an also write ∞
∑

n=i

an =
w ∞

x=i
a⌊x⌋ dx;

that is, an in�nite series isn t merely analogous to an in�nite improper integral, it atually is an in�nite

improper integral, even if trying to evaluate this integral just turns it bak into the series. Again, look at

Figure 9.11.a on page 501 of the textbook; this time, ignore the funtion f and its blue urve, but notie

how the area under the magenta stairase (whih is the graph of a⌊x⌋, so the area under it is the integralw ∞

x=1
a⌊x⌋ dx) represents the in�nite sum a1 + a2 + · · · =

∑∞
n=1 an.

Page 43 of 53



It s important to distinguish onvergene of a series from onvergene of its sequene of terms. If we

think of the numbers a0, a1, a2, and so on as forming a sequene (a0, a1, a2, . . .), then this sequene on-

verges if its limit limn→∞ an exists; but if we think of them as the terms of a series, then this series on-

verges if its sum

∑∞
n=0 an exists, and this is the limit of the sequene of partial sums, not the limit of the

sequene of terms.

Nevertheless, there is a relationship between a series and its sequene of terms: the series an only

onverge if the sequene does, and in fat the series an only onverge if the sequene of terms onverges

to zero! This is beause the jth term is

aj =

j
∑

n=i

an −
j−1
∑

n=i

an;

if the series onverges, then

lim
j→∞

aj =
∞
∑

n=i

an −
∞
∑

n=i

an = 0

(sine j − 1 → ∞ as j → ∞), but if the series doesn t onverge, then this argument is invalid and limj→∞ aj
ould be anything. Be areful, however, sine this argument only goes one way; if the limit of the sequene

of term is zero, then that tells you nothing about whether the series onverges.

6.3 The Fundamental Theorem for series

In the analogy between sequenes and funtions, where di�erentiation of funtions orresponds to di�er-

enes of sequenes and integrals orrespond to series, there is an analogue of the Fundamental Theorem of

Calulus. Just as (d/dx)(
r x

t=a
f(t) dt) = f(x) (the �rst part), so

∆n

Çn−1
∑

m=i

am

å

= aj .

And just as

r b

x=a
(F ′(x)) = F (b)− F (a) (the seond part), so

j−1
∑

n=i

(∆nbn) = bj − bi.

(In eah of these, I had to stop the sum short by 1; for the full analogy, you should really think of

∑j−1
n=i

as

∑

i≤n<j , as desribed on page 38.)

The sum of a di�erene is alled a telesoping series. A telesoping series onverges preisely when

the original sequene (not the di�erene) onverges:

∞
∑

n=i

(∆nbn) = lim
j→∞

j−1
∑

n=1

(∆nbn) = lim
j→∞

(bj − bi) = lim
j→∞

bj − bi.

This result is so important that I ll repeat it without the di�erene notation (whih is not widely used):

∞
∑

n=i

(bn+1 − bn) = lim
j→∞

bj − bi.

Sometimes people prefer to write this as

∞
∑

n=i

(bn − bn−1) = lim
j→∞

bj − bi−1.
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Just as you an get a list of integrals that you an do by �nding the derivatives of basi funtions, so

you an get a list of series that you an do by �nding the di�erenes of basi funtions. We ould do this

with polynomials, for example; although it doesn t ome out as simply as in the ontinuous ase, you an

derive formulas to sum any polynomial sequene. But an even simpler example is an exponential sequene.

That is, onsider the di�erene of rn with respet to n, where r is onstant.

∆n(r
n) = rn+1 − rn = rn(r − 1).

If anything, this is simpler than d(rx)/dx = rx lnx; the natural logarithm has been replaed by a simple

subtration. Conversely, if you want to sum rn, you just need to divide by the onstant r − 1. So

∑

i≤n<J

rn =
rJ − ri

r − 1
,

whih is more ommonly written as

j
∑

n=i

rn =
ri − rj+1

1− r
.

Of ourse, this doesn t work if r = 1; for that,
∑J

n=i 1
n = J − i, or

∑j

n=i 1
n = j − i+ 1.

A series like this is traditionally alled a geometri series. The in�nite version onverges whenever

limJ→∞ rJ exists (for r 6= 1), whih happens preisely when |r| < 1, in whih ase the limit is atually 0.
(If r > 1, then the limit is ∞; if r = 1, then the limit is limJ→∞ J = ∞; if r = −1, then it osillates be-

tween 1 and −1; and if r < −1, then it osillates between ∞ and −∞.) Therefore,

∞
∑

n=i

rn = − ri

r − 1
=

ri

1− r

if |r| < 1.

6.4 Convergene tests

Here is a summary of all of the onvergene tests that we use in this lass. Every test has ertain on-

ditions under whih it gives no answer, and then you ll have to try a di�erent test. The �rst few terms are

always irrelevant to onvergene questions, so every ondition only refers to what the terms do eventually :

at some term aj and then for every term ak for k ≥ j. (I ll write a for the sequene of terms of the series;

that is, we are looking at

∞
∑

n=i

an

for some integer i.)
Every onvergene test, if it onludes that a series onverges, gives a sequene of approximations of

the sum of the series, along with an upper bound on the absolute value of the error of the approximations.

Usually, however, we annot ompute the sum of the series exatly.

The de�nition

Even the de�nition of onvergene an be viewed as a test. The sequene s in this test always exists; it s

the sequene of partial sums in the de�nition. The problem, however, is that you might not be able to �nd

a nie formula for it!

So, an you �nd a nie sequene s suh that

sm =
m
∑

n=i

ai

(eventually)? If not, then this test gives no answer. If so, then go on.
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Does

lim
m→∞

sm

exist (as a �nite real number)? If not, then the series diverges. If so, then the series onverges.

In fat,

∞
∑

n=i

ai = lim
m→∞

m
∑

n=i

ai

when this limit onverges (by de�nition).

The Telesoping Series Test

This is a slight variation of the de�nition that may be easier to spot. Can you �nd a nie sequene b suh
that

an = bn+1 − bn

(eventually) or

an = bn − bn+1

(eventually)? If not, then this test gives no answer. If so, then go on.

Does the limit

lim
n→∞

bn

onverge (to a �nite real number)? If not, then the series diverges. If so, then the series onverges.

In fat,

∞
∑

n=i

(bn+1 − bn) = lim
n→∞

bn − bi

when this limit onverges, and

∞
∑

n=i

(bn − bn+1) = bi − lim
n→∞

bn

when this limit onverges.

The Geometri Series Test

Can you write the series as

an = crn

(eventually)? If not, then this test gives no answer. If so, then go on.

Is c 6= 0? If not, then the series onverges. If so, then go on.

Is |r| < 1? If not, then the series diverges. If so, then the series onverges.

In fat,

∞
∑

n=i

crn =
cri

1− r

when |r| < 1.

The nth-Term Test

This is probably the �rst test that you want to onsider, unless the series �ts one of the speial forms

above.

Does

lim
n→∞

an

onverge to 0? If not, then the series diverges. If so, then this test gives no answer.
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The Integral Test

Can you �nd a nie funtion f de�ned everywhere (eventually, say de�ned on [j,∞)) suh that f(n) = an
(eventually)? If not, then this test gives no answer. If so, then go on.

Does f take only nonnegative values (eventually)? If not, then this test gives no answer. If so, then

go on.

Is f monotone dereasing (eventually)? If not, then this test gives no answer. If so, then go on.

Does w ∞

j
f(x) dx

onverge (to a �nite real number, for some j)? If not, then the series diverges. If so, then the series on-

verges.

In this ase,

m
∑

n=i

f(n) +
w ∞

m+1
f(x) dx ≤

∞
∑

n=i

f(n) ≤
m
∑

n=i

f(n) +
w ∞

m
f(x) dx,

for any m > j.

The p-Series Test

Can you �nd a real number p suh that

an =
1

np

(eventually)? If not, then this test gives no answer. If so, then go on.

Is p > 1? If not, then the series diverges. If so, then the series onverges.

The Diret Comparison Test for Convergene

Does the series onsist of only nonnegative terms (eventually)? If not, then this test gives no answer. If

so, then go on.

Can you �nd a onvergent series b suh that

an ≤ bn

(eventually)? If not, then this test gives no answer. If so, then the original series a also onverges.

The Diret Comparison Test for Divergene

Can you �nd a divergent series b suh that

an ≥ bn

(eventually)? If not, then this test gives no answer. If so, then go on.

Does the series b onsist of only nonnegative terms (eventually)? If not, then this test gives no an-

swer. If so, then the original series a diverges.

The Limit Comparison Test

Does the series onsist of only nonnegative terms (eventually)? If not, then this test gives no answer. If

so, then go on.

Can you �nd a nie series b suh that

lim
n→∞

an
bn

onverges to a positive real number? If not, then this test gives no answer. If so, then go on.

Does the series b onverge? If not, then the original series a also diverges. If so, then the original

series also onverges.
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The Absolute Convergene Test

Does the series ∞
∑

n=i

|ai|

of absolute values onverge (to a �nite real number)? If not, then this test gives no answer. If so, then

the original series onverges.

In this ase, we say that the original series onverges absolutely. If the original series onverges

(whih we an only know by some other test) while the series of absolute values diverges, then the original

series onverges onditionally.

The Ratio Test

Does the limit

lim
n→∞

|an+1|
|an|

exist (as a �nite real number or in�nity)? If not, then this test gives no answer. If so, then go on.

Is this limit di�erent from 1? If not, then this test gives no answer. If so, then go on.

Is this limit less than 1? If not, then the series diverges. If so, then the series onverges.

The Root Test

Does the limit

lim
n→∞

n
»

|an|
exist (as a �nite real number or in�nity)? If not, then this test gives no answer. If so, then go on.

Is this limit di�erent from 1? If not, then this test gives no answer. If so, then go on.

Is this limit less than 1? If not, then the series diverges. If so, then the series onverges.

The Alternating Series Test

Do we have either

an = (−1)
n |an|

or

an = −(−1)
n |an|

(eventually)? If not, then this test gives no answer. If so, then go on.

Do we have

|an+1| ≤ |an|
(eventually)? If not, then this test gives no answer. If so, then go on.

Does

lim
n→∞

|an|
onverge to 0? If not, then the original series diverges. If so, then the original series onverges.

In this ase,

m
∑

n=i

an ≤
∞
∑

n=i

an ≤
m+1
∑

n=i

an

if am+1 is positive, and

m+1
∑

n=i

an ≤
∞
∑

n=i

an ≤
m
∑

n=i

an

if am+1 is negative.

Other tests

There are other tests (and some of these tests an be made more powerful too), but these tests (in these

forms) are the only ones that you are responsible for knowing. In partiular, every onvergene problem

in this lass should suumb, one way or another, to at least one of these tests. However, there is no end

to onvergene tests, and mathematiians are still developing new ones, while some series have resisted all

e�orts so far!
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7 Taylor series

One of the major appliations of in�nite series is to use series to approximate funtions that are di�ult

to alulate. In this lass, we mostly onentrate on series that approximate funtions that you re already

familiar with, beause then I an assign you problems that have de�nite answers. (However, the really use-

ful appliation is when you start with some other problem, suh as an integral or a di�erential equation,

that you an

′
t work out exatly using the usual operations but whih an be expressed as an in�nite se-

ries.)

7.1 Taylor polynomials

Reall that when a funtion f is di�erentiable at a number a, then we an approximate f near a with a

linear funtion that has both the same value and derivative as f does at a:

f(x) ≈ L(x) = f(a) + f ′(a) (x− a);

here, L is a linear funtion, L(a) = f(a), and L′(a) = f ′(a). This is atually only the beginning (well,

slightly after the beginning) of a whole sequene of approximations, eah (typially) better than the one

before it:

f(x) ≈ P0(x) = f(a);

f(x) ≈ P1(x) = f(a) + f ′(a) (x− a);

f(x) ≈ P2(x) = f(a) + f ′(a) (x− a) +
1

2
f ′′(a) (x− a)

2
;

f(x) ≈ P3(x) = f(a) + f ′(a) (x− a) +
1

2
f ′′(a) (x− a)

2
+

1

6
f ′′′(a) (x− a)

3
;

.

.

.

(The funtion that used to be alled L is now alled P1.) The general form of this is

f(x) ≈ Pk(x) =
k

∑

n=0

1

n!
f (n)(a)(x− a)

n
.

(Reall that f (n)
is the nth derivative of f .) Of ourse, f must be di�erentiable at a at least k times for

Pk to make sense.

The funtion Pk is the Taylor polynomial of f at a of order k. The Taylor polynomial of f at 0
of order k is also alled the Malaurin polynomial of f of order k. This terminology is standard (ex-

ept for some variations in the phrase `of order' that you may see); however, the notation Pk is not stan-

dard (and in priniple it ought to mention f and a as well as k). Stritly speaking, Taylor polynomials are

polynomial funtions rather than polynomials as suh (whih are simply algebrai expressions without any

variable piked out); otherwise, you d have to mention the variable x as well.

Notie that a Taylor polynomial Pk of order k is a polynomial funtion of degree at most k. (The de-
gree is normally exatly k, but it s smaller if f (k)(a) happens to be 0.) Also, the nth derivative of Pk at a
agrees with that of f , if n ≤ k; that is,

Pk
(n)(a) = f (n)(a)

if n ≤ k. (On the other hand, if n > k, then Pk
(n)(a) = 0, whih is always the ase for a higher-order deriva-

tive of a polynomial funtion when the order of the derivative is greater than the degree of the polynomi-

al.) The Taylor polynomial of f at a of order k is the only polynomial funtion of degree at most k whose

derivatives at a of order up to k agree with those of f .
Sine polynomials are easy to work with, it s onvenient to make approximations like these. But in

pratie, it s also important to know how good the approximations are. Sine these approximations are

based on the behaviour of f at a, we an really only expet them to be good when x ≈ a. So one way to
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say that these approximations work is to say that Pk(x) approahes f(x) (or more formally that the er-

ror of the approximation, |Pk(x)− f(x)|, approahes 0) as x approahes a. This is true for k = 0 if f is

ontinuous at a, and for k > 0 if f is di�erentiable k times at a. But in fat, the higher-order Taylor poly-

nomials satisfy a stronger ondition:

lim
x→a

|Pk(x)− f(x)|
|x− a|k

= 0,

whih is alled (one version of) Taylor s Theorem. As x approahes a, of ourse |x− a| approahes zero,
so dividing by |x− a| would tend to make a positive quantity larger. So Pk is suh a good approximation

to f that the error not only approahes zero but still approahes zero even after dividing by |x− a| several
times.

When investigating these questions, it s helpful to hange perspetive slightly. Write Rk for f − Pk,

the Taylor remainder of f at a of order k. Then the statement above, showing what a good approxima-

tion Pk is, beomes

lim
x→a

|Rk(x)|
|x− a|k

= 0.

This is good to know, but it may not really be enough; it tells us that moving x lose to a will make the

approximation better, and very quikly; roughly, when x is already lose to a, then moving it twie as

lose will make the approximation 2k times better, or you an make the approximation one deimal digit

more aurate by moving x only

k
√
10 times as lose. However, this doesn t tell us how aurate the ap-

proximation was to start with, nor how lose x has to be for this method of improving the approximation

to start working.

We an get better results if f is di�erentiable one more time (k + 1 times, not just k times) and near a
(not just at a). This strong version of Taylor s Theorem says that

Rk(x) =
(x− a)

k+1

k!

w 1

t=0
(1− t)

k
f (k+1)(a− at+ xt) dt,

as long as f is ontinuously di�erentiable k + 1 times (at least) between a and x. (The integral here may

exist even if f is not ontinuously di�erentiable k + 1 times, but then the value of this integral might not

equal the remainder.) To be more expliit, here is the statement for the �rst few values of k:

f(x) = f(a) + (x− a)
w 1

t=0
f ′(a− at+ xt) dt

= f(a) + f ′(a)(x− a) + (x− a)
2
w 1

t=0
(1− t)f ′′(a− at+ xt) dt

= f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)

2
+

(x− a)
3

2

w 1

t=0
(1− t)

2
f ′′′(a− at+ xt) dt

.

.

.

These statements may be proved by repeated appliation of integration by parts (and the Fundamental

Theorem of Calulus, whih is why f (k+1)
must not only exist but also be ontinuous). To be spei�, you

an prove eah statement using u = (1− t)
k
¿

k! and v = (x− a)
k
f (k)(a− at+ xt), integrating by parts,

simplifying, and (if appliable) applying the previous statement.

For purposes of approximation, it s useless to atually work out the integral that appears here; if you

knew the exat value of f (k+1)
at all of the points between a and x, then you ould probably just evalu-

ate f at x diretly. However, if there is a value Mk suh that you know that f (k+1)
never has an absolute

value greater than Mk at any point between a and x, then you an use Mk to get a bound on the remain-

der:

|Rk(x)| ≤
Mk

(k + 1)!
|x− a|k+1

.
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The reason for this is that we know that Rk(x) is exatly the integral that appeared in the full version of

the theorem, and we an bound its absolute value using the bound on its integrand:

|Rk(x)| =
∣

∣

∣

∣

(x− a)
k+1

k!

w 1

t=0
(1− t)

k
f (k+1)(a− at+ xt) dt

∣

∣

∣

∣

≤ |x− a|k+1

k!

w 1

t=0
(1− t)

k
∣

∣f (k+1)(a− at+ xt)
∣

∣ dt

≤ |x− a|k+1

k!

w 1

t=0
(1− t)

k
Mk dt =

|x− a|k+1

k!

Mk

k + 1
=

Mk

(k + 1)!
|x− a|k+1

.

To be more spei�:

|R0(x)| = |f(x)− f(a)| ≤ M0 |x− a|

if |f ′| is never greater than M0 between a and x,

|R1(x)| =
∣

∣

∣
f(x)−

Ä

f(a) + f ′(a)(x− a)
ä

∣

∣

∣
≤ 1

2
M1 |x− a|2

if |f ′′| is never greater than M1 between a and x,

|R2(x)| =
∣

∣

∣

∣

f(x)−
Å

f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)

2
ã

∣

∣

∣

∣

≤ 1

6
M2 |x− a|3

if |f ′′′| is never greater than M2 between a and x, et. Note that this upper bound on the absolute value

of the remainder is basially the absolute value of the next term that you would add if you went one step

further, exept that instead of using a derivative at a, you must use the largest derivative (in absolute val-

ue) anywhere between a and x.

7.2 Taylor series

We an extend from polynomials to power series and get the Taylor series of f at a:

P∞(x) =
∞
∑

n=0

1

n!
f (n)(a)(x− a)

n
.

(When a = 0, this is the Malaurin series of f .) This power series exists as long as f is in�nitely di�er-

entiable at a, that is as long as f has derivatives of all orders at a. However, there are no theorems guar-

anteeing that this series onverges, nor that it s anything like f(x) when it does onverge (exept that it

must onverge to f(a) when x = a exatly). We say that f is analyti at a if this series onverges to f(x)
at least on some interval around a. Any funtion built out of the usual operations* is analyti, as long

as it s in�nitely di�erentiable, so everywhere that it is de�ned exept where an absolute value or a root

(or a power with a frational exponent) is applied to 0 or an inverse trigonometri sine, osine, seant, or

oseant is applied to ±1. However, there are funtions for whih the Taylor series exists but fails to on-

verge (exept when x = a exatly); the only examples that I know are de�ned themselves as series, suh

as f(x) =
∑∞

n=0 e
−
√
2n cos (2nx) (whih is not a power series but still onverges everywhere by the Root

Test). There are also funtions for whih the Taylor series onverges but not to f(x) (exept when x = a

exatly); an example of this (with a = 0) is f(x) =

ß

e−x2

for x 6= 0,
0 for x = 0.

* addition, subtration, multipliation, division, taking opposites, taking reiproals, taking absolute

values, raising to the power of a onstant, raising to a power when the base is positive, taking roots with a

onstant index, taking roots with a positive radiand, taking logarithms, the six trigonometri operations,

and the six inverse trigonometri operations
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There are several famous Taylor series of analyti funtions that you should know:

xk =
∞
∑

n=0

(

k

n

)

(x− 1)
n
for 0 < x < 2;

ex =
∞
∑

n=0

xn

n!
;

lnx =
∞
∑

n=0

(−1)
n

n+ 1
(x− 1)

n+1
for 0 < x ≤ 2;

sinx =
∞
∑

n=0

(−1)
n

(2n+ 1)!
x2n+1

;

cosx =
∞
∑

n=0

(−1)
n

(2n)!
x2n

;

atanx =
∞
∑

n=0

(−1)
n

2n+ 1
x2n+1

for −1 ≤ x ≤ 1.

(You an hek that these are Taylor series for the laimed funtions by heking the funtions deriva-

tives, and you an prove that these series onverge for the laimed values of x using the usual onvergene

tests, but it takes more work to prove that they onverge to the laimed funtions. Muh of this is proved

in the textbook in Setions 9.7�9.10.)

The formula for xk
may seem partiularly useless, and it mostly is when k is a whole number, but it

is valid for any real number k, suh as k = −1 (for 1/x), k = 1/2 (for

√
x), et. This formula inludes

(k
n

)

,

the binomial oe�ient of k with index n, whih is de�ned by

(

k

n

)

=
kn

n!
=

k(k − 1)(k − 2) · · ·
Ä

k − (n− 1)
ä

n(n− 1)(n− 2) · · · 1 ;

that is, the binomial oe�ient is a fration whose numerator and denominator eah onsists of n fators,

with the denominator beginning at n to produe n! and with the numerator beginning at k to produe kn,

the falling power of k with index n (so in partiular, n! = nn
). Just as 0! = 1, so

(k
0

)

= 1
1 = 1; anoth-

er useful fat is that

(−1
n

)

= (−1)
n
. (There is really a lot to be said about this stu�, whih is part of the

branh of mathematis alled ombinatoris, but the only thing that you re responsible for is to alulate

n! and
(k
n

)

for spei� values of k and n.)
When you use these formulas, you may need to substitute some other expression for x, and you may

need to start a sum at some other index. For example, if you want to evaluate

∞
∑

n=3

xn

n
,

then the important thing to notie is that the denominator is the same as the exponent (rather than the

fatorial of the exponent, as in some of the formulas) and that almost every natural number appears as an

exponent (rather than only odd numbers or only even numbers, as in some of the formulas), whih means

that it s the formula for lnx that s relevant. To get the exponent in the right form, hoose m so that n =
m+ 1; that is, m = n− 1. You now have

∞
∑

m=2

xm+1

m+ 1
.
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To get the right base, you might hoose y so that x = y − 1; however, to get the fator of (−1)
n
as well,

you should atually hoose y so that x = −(y − 1). That is, y = 1− x, so you now have

∞
∑

m=2

Ä

−(y − 1)
ä

m+1

m+ 1
=

∞
∑

m=2

(−1)
m+1

m+ 1
(y − 1)

m+1
= −

∞
∑

m=2

(−1)
m

m+ 1
(y − 1)

m+1
.

Now you an math this against the formula for lnx, using m in plae of n and y in plae of x, with an

extra minus sign out front and with the �rst two terms missing. Sine these missing terms are

1
∑

m=0

(−1)
m

m+ 1
(y − 1)

m+1
=

1

1
(y − 1)

1
+

−1

2
(y − 1)

2
= −1

2
y2 + 2y − 3

2
,

the original series equals −
Ä

ln y − (−1/2 y2 + 2y − 3/2)
ä

= − ln y − 1/2 y2 + 2y − 3/2 whenever 0 < y ≤ 2.
Remembering that y = 1− x, you an �nally onlude that

∞
∑

n=3

xn

n
= − ln (1− x)− 1

2
(1− x)

2
+ 2(1− x)− 3

2
= − ln (1− x)− 1

2
x2 − x for −1 ≤ x < 1.

Some of these formulas appear in slightly di�erent forms in the textbook; one version may be more onve-

nient for a partiular problem than another, but either version should su�e for all of the relevant prob-

lems.

Page 53 of 53


