
Integrals

This is a summary of the 
on
epts of integral 
al
ulus.

1 De�nite integrals

Just as the di�erential of a �nite quantity is an in�nitesimal (in�nitely small) 
hange in that quantity, so

the de�nite integral of an in�nitesimal quantity is the sum of in�nitely many values of that quantity,

giving a �nite result. If x and y are standard quantities (neither in�nitely large nor in�ntely small), then

y dx is a typi
al in�nitesimal quantity. (An expression like this is 
alled a di�erential form.) If we add this

up from the point where x = a to the point where x = b, then we get the de�nite integral

w
b

x=a

y dx.

As long as the same variable x is used throughout, then it s safe to abbreviate this as

w
b

a

y dx.

For example,

r 5

3
(2t+ 4) dt is the sum, as t varies smoothly from 3 to 5, of the produ
t of 2t+ 4 and

dt (the in�nitesimal 
hange in t) at ea
h stage along the way. We 
an think of this produ
t as giving the

area of a re
tangle whose height is 2t+ 4 and whose width is dt; if we line these re
tangles up side by side,

then they 
ombine to give a trapezoid:
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We 
an �nd out the area of this trapezoid using geometry, sin
e its width is 5− 3 = 2 and its height varies

linearly from 2(3) + 4 = 10 to 2(5) + 4 = 14. Therefore,

w 5

3
(2t+ 4) dt =

10 + 14

2
· 2 = 24.

Normally, you 
an t evaluate an integral by drawing a pi
ture like this; I ll 
ome ba
k to how we 
an


al
ulate it after a brief digression.
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2 Antidi�erentials

If du = y dx, then y dx is the di�erential of u, as you know. We also say that u is an antidi�erential

of y dx. However, u is not the only antidi�erential of y dx; if C is any 
onstant, then d(u+ C) = y dx too,

so u+ C is also an antidi�erential of y dx. However, for a 
ontinuously de�ned quantity, there is no other

antidi�erential of y dx. Even if there are gaps in the de�nition of the quantity, we 
an say that u+ C is

an antidi�erential of du if and only if C is a lo
al 
onstant, meaning that it 
an 
hange value only a
ross

a gap where u is unde�ned. (Ultimately, this is a 
onsequen
e of the theorem that if the derivative of a

fun
tion on an interval is always zero, then that fun
tion must be a 
onstant; the relevant fun
tion here is

the di�eren
e between the fun
tions that give any two possible antidi�erentials.)

Antidi�erentials are denoted by `

r
', so we have

w
du = u+ C

by de�nition. (This looks similar to the notation for a de�nite integral, whi
h makes sense reasons that

will be explained below, but you 
an tell the di�eren
e be
ause there are no bounds atta
hed to the sym-

bol.) For example,

d(t2 + 4t) = 2t dt+ 4dt = (2t+ 4) dt,

so w
(2t+ 4) dt =

w
d(t2 + 4t) = t2 + 4t+ C.

As 2t+ 4 is the derivative of t2 + 4t with respe
t to t, we also say that t2 + 4t is an antiderivative of

2t+ 4 with respe
t to t. An antidi�erential or antiderivative is also 
alled an inde�nite integral; so `in-

de�nite integral of (t2 + 4) dt' (antidi�erential) and `inde�nite integral of t2 + 4 with respe
t to t' (antide-

rivative) both mean

r
(t2 + 4) dt.

To �nd antidi�erentials (or antiderivatives), we must run the rules for di�erentials (and derivatives)

ba
kwards. This is often a subtle pro
ess, whi
h I ll return to after a brief digression.

3 The Fundamental Theorem of Cal
ulus

The Fundamental Theorem of Cal
ulus relates de�nite and inde�nite integrals. There are two parts:

1. d
(w

b

t=a

f(t) dt
)

= f(b) db− f(a) da;

2.

w
b

t=a

df(t) = f(b)− f(a).

The �rst part applies whenever f is a 
ontinuous fun
tion (assuming that a and b are di�erentiable quan-

tities); in parti
ular, it 
laims that the integral exists and is di�erentiable. The se
ond part applies when-

ever f is a di�erentiable fun
tion (assuming that t is a di�erentiable quantity); in parti
ular, it 
laims that

the integral exists.

Although both of these parts refer dire
tly to de�nite integrals, inde�nite integrals (antidi�erentials)

appear impli
itly be
ause of the presen
e of the di�erentials. Spe
i�
ally, the �rst part 
laims that the

de�nite integral that appears in it is an antidi�erential of the di�erential form on its right-hand side, and

the se
ond part shows how to evaluate a de�nite integral of a di�erential form whose antidi�erential is

known.

If you want to express these without refering to the fun
tion f , then you 
an write them thus:

1. d
(w

b

a

ω
)

= ω|
b

a
;

2.

w
b

a

du = u|
b

a
.

Here, I m using ω to stand for an entire di�erential form (for whi
h people often use Greek letters) and

u|
b

a
is short for u|

b
− u|

a
. These basi
ally say that d and

r

an
el as long as you move the bounds on the

integral into bounds on a di�eren
e.

It s the se
ond part of the theorem that we use the most. If you want to evaluate a de�nite integralr
b

a
y dx, then you should �rst �gure out the inde�nite integral

r
y dx. If the answer to this is u (or more

generally u+ C), then this means that y dx = du; that is, u is an antidi�erential of y dx. Therefore,
r
b

x=a
y dx =
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r
b

x=a
du, and the FTC tells us that this is equal to u|

b

x=a
. As this last expression is simply a di�eren
e,

you 
an �gure it out using simple algebra.

For example, 
onsider w 5

t=3
(2t+ 4) dt.

In the last se
tion, we saw that

r
(2t+ 4) dt = t2 + 4t+ C; in other words, (2t+ 4) dt = d(t2 + 4t). There-

fore, w 5

3
(2t+ 4) dt =

w 5

3
d(t2 + 4t) = (t2 + 4t)|

5

3

=
Ä

(5)
2
+ 4(5)

ä

−
Ä

(3)
2
+ 4(3)

ä

= (45)− (21) = 24.

(Noti
e that this is the same answer as when I did this using geometry!)

This also explains why the same term `integral' and symbol `

r
' are used for both the de�nite integral

(a sum of in�nitely small quantities) and the inde�nite integral (the antidi�erential). They at �rst appear

to be 
ompletely di�erent 
on
epts, but in reality they are 
losely related, through the Fundamental Theo-

rem of Cal
ulus.

4 Integration te
hniques

This leaves us with one problem: how do we �nd inde�nite integrals?

Ea
h rule for di�erentiation gives us a rule for integration. In the table below, I have some rules for

di�erentiation (all of whi
h you should know by now), together with 
orresponding rules for integration:

d(u+ v) = du+ dv,
w
(y + z) dx =

w
y dx+

w
z dx;

d(ku) = k du (when k is 
onstant),

w
ky dx = k

w
y dx (when k is 
onstant);

d(uv) = v du+ u dv,
w
u dv = uv −

w
v du;

d(un) = nun−1 du (when n is 
onstant),

w
um du =

1

m+ 1
um+1 + C (when m 6= −1 is 
onstant);

d(eu) = eu du,
w
eu du = eu + C;

d(ln |u|) =
1

u
du,

w 1

u
du = ln |u|+ C;

d(sinu) = cosu du,
w
cosu du = sinu+ C;

d(cosu) = − sinu du,
w
sinu du = − cosu+ C;

et
.

Using these rules, you 
an work out all of the integrals in the textbook through Chapter 6, and then some.

For example, to �nd

r
(2t+ 4) dt:

w
(2t+ 4) dt =

w
2t dt+

w
4 dt = 2

w
t1 dt+ 4

w
dt = 2

Å

1

2
t2
ã

+ 4t+ C = t2 + 4t+ C.

This is the same answer as we got before, but this time I didn t have to guess the answer and get lu
ky; I

was able to a
tually 
al
ulate it. That s how you re going to be doing most of the problems.

For more 
ompli
ated integrals, there are fan
ier te
hniques. Rather than learn all of these, you 
an

program them into a 
omputer. There are even free websites that will do this for you!
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5 Summary

To �nd the inde�nite integral

r
y dx, you need to use integration te
hniques; your answer will still have the

variable in it and should end with a new lo
al-
onstant term C. To �nd the de�nite integral

r
b

a
y dx, �rst

�nd the inde�nite integral and then take a di�eren
e; assuming a and b are 
onstants, your answer will

also be 
onstant (and the C will disappear).

So for example, to �nd the de�nite integral of 2t+ 4 with respe
t to t from 3 to 5:

w 5

3
(2t+ 4) dt =

w 5

3
(2t1 dt+ 4dt) =

Å

2

Å

1

2
t2
ã

+ 4t

ã

∣

∣

∣

∣

5

3

= (t2 + 4t)|
5

3
= 45− 21 = 24.

This is simply a 
ombination of 
al
ulations that I did earlier, to �nd the inde�nite integral and to apply

the ft
.

6 Semide�nite integrals

Besides the de�nite integral

r
b

a
f(x) dx and the inde�nite integral

r
f(x) dx, there is also a semide�nite

integral

r
a
f(x) dx. While the de�nite integral works out to a spe
i�
 value (as long as f , a, and b are

spe
i�ed), the inde�nite and semide�nite integrals still have the variable x in them. On the other hand,

while the inde�nite integral depends on an arbitrary C, the de�nite and semide�nite integrals don t have

this. So the semide�nite integral �ts in between the other two kinds.

Here is one way to de�ne it: w
x=a

f(x) dx =
w

x

t=a

f(t) dt.

That is, introdu
e a new variable t and use the old variable x as the upper bound of a de�nite integal.

The Se
ond Fundamental Theorem of Cal
ulus,

w
b

x=a

f(x) dx =
Ä

w
f(x) dx

ä

∣

∣

∣

b

x=a

=
Ä

w
f(x) dx

ä

∣

∣

∣

x=b

−
Ä

w
f(x) dx

ä

∣

∣

∣

x=a

,

also tells us how to evaluate semide�nite integrals:

w
x=a

f(x) dx =
w
f(x) dx−

Ä

w
f(x) dx

ä

∣

∣

∣

x=a

.

In other words, work out the inde�nite integral as usual; then, instead of evaluating this at two values of

the variable before subtra
ting, evalute it at one value and keep the variable in the other expression (then

subtra
t). For example,

w
x=1

x dx =
x2

2
−

Å

x2

2

ã

∣

∣

∣

∣

x=1

=
x2

2
−

(

(1)
2

2

)

=
1

2
x2 −

1

2
.

(You 
an probably skip the step with |
x=1

in it, sin
e on
e you ve written down x2/2 before the minus

sign, you 
an immediately plug in 1 for x to get (1)
2
¿

2 after the minus sign.)

7 Integration by parts

Integration by parts is based on the Produ
t Rule for di�erentiation. In terms of di�erentials, the Produ
t

Rule says that d(uv) = v du+ u dv. Taking inde�nite integrals of both sides and rearranging the terms

slightly, this be
omes w
u dv = uv −

w
v du.

Unlike integration by substitution, you don t rewrite the problem in terms of u (nor v). Instead, you iden-

tify suitable u and v and their di�erentials and then write out the equation above in terms of x (or what-

ever your variable is).
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You want to pi
k u and v so that

r
u dv is the integral that you 
are about, whi
h means splitting up

the fa
tors of the integrand, some into u and some into dv. On
e you know u and dv, you 
an �nd du
and v, at least if you know how to integrate whatever dv is. (When you do this integration of dv to get

v, you have a 
hoi
e up to a lo
al 
onstant; you re de
iding what v is, so just pi
k the simplest expression.)

If you split things up well, then

r
v du will be simpler than what you started with.

Here is my advi
e on how to split fa
tors into u and dv so that integration by parts will make the

next integral easier. The items on the top of the list are the best 
hoi
es for dv, and the items on the bot-

tom are the best 
hoi
es for u. Put as many fa
tors as you 
an into dv, starting at the top of this list and

working your way to the bottom, as long as you still have something that you know how to integrate to

get v. Then put whatever fa
tors are left over into u.

• dx (this must go into dv),
• ex and other exponential expressions,

• sinx and other trigonometri
 expressions,

• polynomials and other algebrai
 expressions,

• lnx and other logarithmi
 expressions,

• asinx = sin−1 x and other inverse trigonometri
 expressions.

In 
ompli
ated 
ases, you may have to use integration by parts more than on
e. Just keep going until

either you get something that you 
an handle or you get ba
k to where you started. In the latter 
ase, you


an set up an equation to solve for your integral.
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