
Homework 16 Math-1700-es31 2013 February 19
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this is a geometric series, which converges if and only if����x− 2
10

���� < 1,

in other words if and only if
−8 < x < 12.
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is what it converges to.)
a The radius of convergence in x is

(12)− (−8)
2

= 10,

and the interval of convergence in x is
(−8, 12).

b I know that this, as a power series, converges absolutely at least in the interior of its interval of conver-
gence, which in this case is all of its interval of convergence. So it converges absolutely exactly for

−8 < x < 12.

c Similarly, it converges conditionally never.

9.7.18 This series is not a geometric series, so I �rst apply the Root Test or the Ratio Test to the absolute val-
ues. Either test would work, but the Ratio Test is probably a little easier here.
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So, the series converges absolutely at least if this is less than 1, in other words if

−4 < x < 4.

Now check the endpoints; if x = 4, then

nxn
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n
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.

I can compare the sum of this to the sum of 1/n using the Limit Comparison Test, to conclude that it di-
verges. Next, if x = −4, then

nxn
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.

I can use the Alternating Series Test to conclude that this converges. In fact, it converges conditionally,
because the series of absolute values is the same series that I appeared when x = 4 above.
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a The radius of convergence in x is
(4)− (−4)

2
= 4,

and the interval of convergence in x is
[−4, 4).

b I know that this, as a power series, converges absolutely at least in the interior of its interval of conver-
gence. Since it converges only conditionally for x = −4, it converges absolutely exactly for

−4 < x < 4.

c It converges conditionally exactly for
x = −4.

9.7.39 This time the Ratio Test is de�nitely easier.
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So, the series converges absolutely at least if this is less than 1, in other words if

−8 < x < 8.

Thus, the radius of convergence in x is
(8)− (−8)

2
= 8.

(I have not done the work to determine the interval of convergence, which the problem didn t ask for.)
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