9.7.5
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Homework 16 MATH-1700-Es31 2013 February 19

Since
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this is a geometric series, which converges if and only if
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in other words if and only if

(In that case,
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is what it converges to.)
The radius of convergence in z is
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and the interval of convergence in z is

(—8,12).

I know that this, as a power series, converges absolutely at least in the interior of its interval of conver-
gence, which in this case is all of its interval of convergence. So it converges absolutely exactly for

-8 <x <12,
Similarly, it converges conditionally never.

This series is not a geometric series, so I first apply the Root Test or the Ratio Test to the absolute val-
ues. Either test would work, but the Ratio Test is probably a little easier here.
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So, the series converges absolutely at least if this is less than 1, in other words if
—4<z<4

Now check the endpoints; if x = 4, then
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I can compare the sum of this to the sum of 1/n using the Limit Comparison Test, to conclude that it di-
verges. Next, if x = —4, then
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I can use the Alternating Series Test to conclude that this converges. In fact, it converges conditionally,
because the series of absolute values is the same series that I appeared when x = 4 above.
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The radius of convergence in z is

=4
2 b
and the interval of convergence in z is
[—4,4).
I know that this, as a power series, converges absolutely at least in the interior of its interval of conver-
gence. Since it converges only conditionally for x = —4, it converges absolutely exactly for
—4 <z <4
It converges conditionally exactly for
r = —4.
This time the Ratio Test is definitely easier.
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So, the series converges absolutely at least if this is less than 1, in other words if
-8 <z <8

Thus, the radius of convergence in x is

(I have not done the work to determine the interval of convergence, which the problem didn't ask for.)
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