9.8.27 If $f(x)=1 / x^{2}$, then it appears, by calculating the first few examples, that

$$
f^{(n)}(x)=(-1)^{n} \frac{(n+1)!}{x^{n+2}}
$$

Certainly this is correct when $n=0$, since

$$
(-1)^{0} \frac{(0+1)!}{x^{0+2}}=\frac{1}{x^{2}}=f(x)
$$

So to verify the pattern, if this is correct when $n=k$, then

$$
f^{(k+1)}(x)=\frac{\mathrm{d}}{\mathrm{~d} x} f^{(k)}(x)=\frac{\mathrm{d}}{\mathrm{~d} x}\left((-1)^{k} \frac{(k+1)!}{x^{k+2}}\right)=(-1)^{k} \frac{(k+1)!(-(k+2))}{x^{k+2+1}}=(-1)^{k+1} \frac{(k+2)!}{x^{k+3}}
$$

so the pattern holds when $n=k+1$ as well. This shows (by 'mathematical induction') that the pattern is correct for every value of n.

Therefore,

$$
f^{(n)}(1)=(-1)^{n} \frac{(n+1)!}{1^{n+2}}=(-1)^{n}(n+1)!
$$

so

$$
\frac{f^{(n)}(1)}{n!}=\frac{(-1)^{n}(n+1)!}{n!}=(-1)^{n}(n+1)
$$

and the Taylor series is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}}{n!} x^{n}=\sum_{n=0}^{\infty}(-1)^{n}(n+1) x^{n}
$$

