6.5.9

$$
W=\int_{0}^{180} 4.5 x \mathrm{~d} x=\left.4.5\left(\frac{x^{2}}{2}\right)\right|_{0} ^{180}=4.5\left(\frac{(180)^{2}}{2}-\frac{(0)^{2}}{2}\right)=72900
$$

so the work done is 72,900 foot-pounds. (With units, $W=4.5 \mathrm{lb} / \mathrm{ft}\left(\frac{(180 \mathrm{ft})^{2}}{2}\right)$, which will calculate the correct unit of foot-pounds.)
6.5.21 The radius at height y is $\sqrt{25-y^{2}}$, so the area of the cross section at that height is

$$
A=\pi\left(\sqrt{25-y^{2}}\right)^{2}=\pi\left(25-y^{2}\right)
$$

Then the weight of the infinitely thin slice at that height is

$$
9800 A \mathrm{~d} y=9800 \pi\left(25-y^{2}\right) \mathrm{d} y
$$

The slice is raised to height 4 , so a distance of $4-y$. Thus, the overall work is

$$
\begin{aligned}
W & =\int_{-5}^{0} 9800 \pi\left(25-y^{2}\right)(4-y) \mathrm{d} y \\
& =9800 \pi \int_{-5}^{0}\left(100-25 y-4 y^{2}+y^{3}\right) \mathrm{d} y \\
& =\left.9800 \pi\left(100 y-25 \frac{y^{2}}{2}-4 \frac{y^{3}}{3}+\frac{y^{4}}{4}\right)\right|_{-5} ^{0} \\
& =-9800 \pi\left(100(-5)-25 \frac{(-5)^{2}}{2}-4 \frac{(-5)^{3}}{3}+\frac{(-5)^{4}}{4}\right)=\frac{14393750 \pi}{3} .
\end{aligned}
$$

Sinc the density $9800 \mathrm{~N} / \mathrm{m}^{3}$ of water is only given to two significant digits, let us round this off to 15 million joules. (With units, $W=\int_{-5 \mathrm{~m}}^{0} 9800 \mathrm{~N} / \mathrm{m}^{3} \pi\left(25 \mathrm{~m}^{2}-y^{2}\right)(4 \mathrm{~m}-y) \mathrm{d} y$, which will calculate the correct unit of newton-metres, or joules.)

