7.2.7 There's no hope of solving this equation with the technique that we know, but that's OK; we only have to check the solution that's given to us.

First, if $y=1 / x \cos x$, then

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{x^{2}} \cos x-\frac{1}{x} \sin x
$$

So

$$
x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=x\left(-\frac{1}{x^{2}} \cos x-\frac{1}{x} \sin x\right)+\left(\frac{1}{x} \cos x\right)=-\frac{1}{x} \cos x-\sin x+\frac{1}{x} \cos x=-\sin x
$$

so the equation is satisfied.
Next, if $x=\pi / 2$, then

$$
y=\frac{1}{\pi / 2} \cos \left(\frac{\pi}{2}\right)=0
$$

so the initial condition is satisfied.
Therefore, the solution given is correct.

7.2.11

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\mathrm{e}^{x-y} ; \\
\mathrm{d} y & =\frac{\mathrm{e}^{x}}{\mathrm{e}^{y}} \mathrm{~d} x \\
\mathrm{e}^{y} \mathrm{~d} y & =\mathrm{e}^{x} \mathrm{~d} x ; \\
\int \mathrm{e}^{y} \mathrm{~d} y & =\int \mathrm{e}^{x} \mathrm{~d} x ; \\
\mathrm{e}^{y} & =\mathrm{e}^{x}+C \\
y & =\ln \left(\mathrm{e}^{x}+C\right) .
\end{aligned}
$$

7.2.35 The easiest way to do this is to use

$$
A=P 2^{-t / h}
$$

with $h=24360$ years. Solve for t :

$$
\begin{aligned}
A & =P 2^{-t / h} \\
\frac{A}{P} & =2^{-t / h} \\
\log _{2}\left(\frac{A}{P}\right) & =-\frac{t}{h} \\
t & =-h \log _{2}\left(\frac{A}{P}\right)
\end{aligned}
$$

When 80 percent is gone, 20 percent is left, so $A=20 / 100 P$. Therefore,

$$
t=-24360 \mathrm{y} \log _{2}\left(\frac{20}{100}\right)=-24360 \frac{\ln 0.2}{\ln 2} \mathrm{y} \approx 56600 \mathrm{y}
$$

(where ' y ' is the abbreviation for years).

