8.4.7 Since $t^{2}-5 t+6=(t-2)(t-3)$ and $t^{2}+8$ is the same degree, somehow

$$
\frac{t^{2}+8}{t^{2}-5 t+6}=A+\frac{B}{t-2}+\frac{C}{t-3}
$$

Multiplying by the common denominator,

$$
t^{2}+8=A t^{2}-5 A t+6 A+B t-3 B+C t-2 C
$$

Gathering like terms,

$$
\begin{aligned}
A & =1 \\
-5 A+B+C & =0, \text { and } \\
6 A-3 B-2 C & =8
\end{aligned}
$$

so $A=1, B=-12$, and $C=17$. Therefore,

$$
\frac{t^{2}+8}{t^{2}-5 t+6}=1-\frac{12}{t-2}+\frac{17}{t-3}
$$

(It follows that

$$
\int \frac{t^{2}+8}{t^{2}-5 t+6} \mathrm{~d} t=t-12 \ln |t-2|+17 \ln |t-3|+C
$$

although this wasn't asked for.)

