8.6.15.a To estimate

$$
\int_{a}^{b} f(t) \mathrm{d} t=\int_{0}^{2}\left(t^{3}+t\right) \mathrm{d} t
$$

we have

$$
\begin{aligned}
f(t) & =t^{3}+t, \text { so } \\
f^{\prime}(t) & =3 t^{2}+1, \text { so } \\
f^{\prime \prime}(t) & =6 t .
\end{aligned}
$$

Since $f^{\prime \prime}$ is increasing (say because $f^{\prime \prime \prime}(t)=6$ is positive), the maximum value M of $f^{\prime \prime}$ on $[0,2]$ is $f^{\prime \prime}(2)=$ $6(2)=12$. With n steps, we have

$$
|E| \leq \frac{M(b-a)^{3}}{12 n^{2}}=\frac{12(2-0)^{3}}{12 n^{2}}=\frac{8}{n^{2}}
$$

To ensure $|E|<10^{-4}$, then,

$$
\begin{aligned}
10^{-4} & >\frac{8}{n^{2}}, \text { so } \\
n^{2} & >\frac{8}{10^{-4}}=80000, \text { so } \\
n & >\sqrt{80000} \approx 282.8 .
\end{aligned}
$$

Since n must be a natural number,

$$
n \geq 283
$$

