1 Given

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{x-y}
$$

and $y=1$ when $x=0$, find y as a function of x.
a $y=\ln \left(\mathrm{e}^{x}-1+\mathrm{e}\right)$
b $y=\ln \left(\mathrm{e}^{x+1}\right)$
c $y=\ln \left(\mathrm{e}^{x}-1-\mathrm{e}^{2}\right)$
d $y=\ln \left(\mathrm{e}^{x+1}+\mathrm{e}\right)$
2 A tank has the shape of a cylinder, with a height of 8 metres and a circular base with a radius of 5 metres. The tank is half full of a liquid which weighs 10 newtons per cubic metre. How much work is required to pump the water 3 metres above the top of the tank?
a 9000π joules
b 6000π joules
c 5000π joules
d 8000π joules

3 Integrate

$$
\int_{1}^{\mathrm{e}} x \ln x \mathrm{~d} x .
$$

a $\frac{3}{4} \mathrm{e}^{2}-\frac{1}{2}$
b $\frac{1}{4}-\frac{1}{4} \mathrm{e}^{2}$
c $\frac{3}{4} \mathrm{e}^{2}-\frac{1}{4}$
d $\frac{1}{4}+\frac{1}{4} \mathrm{e}^{2}$
4 Approximate

$$
\int_{0}^{1} \frac{\mathrm{~d} x}{2-x}
$$

using the Trapezoid Rule with 4 trapezoids.
$a \frac{1171}{840} \approx 1.3940$
b $\frac{1171}{1680} \approx 0.6970$
c $\frac{743}{840} \approx 0.8845$
$d \frac{743}{1050} \approx 0.7076$

5 Integrate

$$
\int_{2}^{\infty} \frac{\mathrm{d} x}{x^{2}}
$$

a $\frac{1}{2}$
b $-\frac{1}{2}$
$c \infty$ (or undefined)
d 2
6 Find the sum

$$
\sum_{n=2}^{\infty} \frac{(-2)^{n+1}}{3^{n}}
$$

a $\frac{8}{3}$
$b-\frac{8}{15}$
c $\frac{4}{15}$
$d-\frac{6}{5}$
7 Which of the following tests will determine the convergence of

$$
\sum_{n=1}^{\infty} \frac{3 n-1}{n^{2}} ?
$$

a The Limit Comparison Test, comparing to $\sum_{n=1}^{\infty} \frac{1}{n}$
b The Direct Comparison Test, comparing to $\sum_{n=1}^{\infty} \frac{3}{n}$
c Both of the above
d Neither of the above
8 Which of the following tests will determine the convergence of

$$
\sum_{n=1}^{\infty} \frac{4^{n}}{5^{n} \sqrt{n}} ?
$$

a The Root Test
b The Ratio Test
c Both of the above
d Neither of the above

9 Does

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{5}{n+1}
$$

converge conditionally or absolutely?
a Absolutely
b Conditionally
c Both of the above
d Neither of the above
10 What is the interval of convergence (in x) of

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{(x+2)^{n}}{2^{n} n} ?
$$

$a \quad[-4,0)$
$b(-4,0)$
c $(-4,0]$
$d[-4,0]$
11 What is the Taylor series of

$$
f(x)=\frac{1}{x+2}
$$

at $x=3$?
a $f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{(x-3)^{n}}{5^{n+1} n!}$
b $f(x)=\sum_{n=1}^{\infty}(-1)^{n} \frac{(x-3)^{n}}{5^{n} n!}$
c $f(x)=\sum_{n=1}^{\infty}(-1)^{n} \frac{(x-3)^{n}}{5^{n}}$
d $f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{(x-3)^{n}}{5^{n+1}}$
12 Write

$$
r=\cot \theta \csc \theta
$$

in rectangular (Cartesian) coordinates.
a $y=x^{2} \sqrt{x^{2}+y^{2}}$
b $x=y^{2} \sqrt{x^{2}+y^{2}}$
c $y=x^{2}$
d $x=y^{2}$

13 Given

$$
r=1+\sin \theta
$$

in polar coordinates, what is the slope of the tangent line when $\theta=\pi / 3$?
a Undefined (or infinite)
b 1
c -1
d 0
14 Given

$$
r=3 \sin \theta
$$

in polar coordinates, what is the length of the curve from $\theta=0$ to $\theta=\pi / 4$?
a 3π
b $\frac{3 \pi}{8}$
c $\frac{3 \pi}{2}$
d $\frac{3 \pi}{4}$

Answers

$1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{D}, 4 \mathrm{~B}, 5 \mathrm{~A}, 6 \mathrm{~B}, 7 \mathrm{~A}, 8 \mathrm{C}, 9 \mathrm{~B}, 10 \mathrm{C}, 11 \mathrm{D}, 12 \mathrm{D}, 13 \mathrm{C}, 14 \mathrm{D}$

