5.45 This one is simpler if you do the substitution only in the cosine term and do the polynomial terms directly. It's very tempting to substitute $u=2 \theta+1$ in everything, but that makes it more complicated and easier to mess up. However, if you want to do that anyway, here's how it would go:

First,

$$
\begin{aligned}
u & =2 \theta+1, \\
\mathrm{~d} u & =2 \mathrm{~d} \theta, \\
\mathrm{~d} \theta & =\frac{1}{2} \mathrm{~d} u
\end{aligned}
$$

then

$$
\begin{aligned}
\int(2 \theta+1+2 \cos (2 \theta+1)) \mathrm{d} \theta & =\int(u+2 \cos u)\left(\frac{1}{2} \mathrm{~d} u\right)=\int\left(\frac{1}{2} u+\cos u\right) \mathrm{d} u \\
& =\frac{1}{4} u^{2}+\sin u+C=\frac{1}{4}(2 \theta+1)^{2}+\sin (2 \theta+1)+C
\end{aligned}
$$

You can simplify this expression:

$$
\frac{1}{4}(2 \theta+1)^{2}+\sin (2 \theta+1)+C=\frac{1}{4}\left(4 \theta^{2}+4 \theta+1\right)+\sin (2 \theta+1)+C=\theta^{2}+\theta+\frac{1}{4}+\sin (2 \theta+1)+C .
$$

The answer in the back of the book (which you'll get if you don't substitute in the polynomial terms) is

$$
\theta^{2}+\theta+\sin (2 \theta+1)+C ;
$$

these are equivalent, since the extra $1 / 4$ may be absorbed into the constant C.

