
Notes Math-1700-es31 2016 February 15

Taylor s Theorem

Reall that when a funtion f is di�erentiable at a number c, then we an approximate f near c with a

linear funtion that has both the same value and derivative as f does at c:

f(x) ≈ L(x) = f(c) + f ′(c) (x− c);

here, L is a linear funtion, L(c) = f(c), and L′(c) = f ′(c). This is atually only the beginning (well, slight-

ly after the beginning) of a whole sequene of approximations, eah (typially) better than the one before

it:

f(x) ≈ P0(x) = f(c);

f(x) ≈ P1(x) = f(c) + f ′(c) (x− c);

f(x) ≈ P2(x) = f(c) + f ′(c) (x− c) +
1

2
f ′′(c) (x− c)

2
;

f(x) ≈ P3(x) = f(c) + f ′(c) (x− c) +
1

2
f ′′(c) (x− c)

2
+

1

6
f ′′′(c) (x− c)

3
;

.

.

.

(The funtion that used to be alled L is now alled P1.) The general form of this is

f(x) ≈ Pk(x) =
k

∑

n=0

1

n!
f (n)(c)(x− c)

n
.

(Reall that f (n)
is the nth derivative of f .) Of ourse, f must be di�erentiable at c at least k times for

Pk to make sense.

The funtion Pk is the Taylor polynomial of f at c of order k. The Taylor polynomial of f at 0 of

order k is also alled the Malaurin polynomial of f of order k. This terminology is standard (exept

for some variations in the phrase `of order' that you may see); however, the notation Pk is not standard

(and in priniple it ought to mention f and c as well as k). Stritly speaking, Taylor polynomials are poly-

nomial funtions rather than polynomials as suh (whih are simply algebrai expressions without any

variable piked out); otherwise, you d have to mention the variable x as well.

Notie that a Taylor polynomial Pk of order k is a polynomial funtion of degree at most k. (The de-

gree is normally exatly k, but it s smaller if f (k)(c) happens to be 0.) Also, the nth derivative of Pk at c

agrees with that of f , if n ≤ k; that is,

Pk
(n)(c) = f (n)(c)

if n ≤ k. (On the other hand, if n > k, then Pk
(n)(c) = 0, whih is always the ase for a higher-order deriva-

tive of a polynomial funtion when the order of the derivative is greater than the degree of the polynomi-

al.) The Taylor polynomial of f at c of order k is the only polynomial funtion of degree at most k whose

derivatives at c of order up to k agree with those of f .

Sine polynomials are easy to work with, it s onvenient to make approximations like these. But in

pratie, it s also important to know how good the approximations are. Sine these approximations are

based on the behaviour of f at c, we an really only expet them to be good when x ≈ c. So one way to

say that these approximations work is to say that Pk(x) approahes f(x) (or more formally that the er-

ror of the approximation, |Pk(x)− f(x)|, approahes 0) as x approahes c. This is true for k = 0 if f is

ontinuous at c, and for k > 0 if f is di�erentiable k times at c. But in fat, the higher-order Taylor poly-

nomials satisfy a stronger ondition:

lim
x→c

|Pk(x)− f(x)|
|x− c|k

= 0,

whih is alled (one version of) Taylor s Theorem. As x approahes c, of ourse |x− c| approahes zero,
so dividing by |x− c| would tend to make a positive quantity larger. So Pk is suh a good approximation
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to f that the error not only approahes zero but still approahes zero even after dividing by |x− c| multi-

ple times.

When investigating these questions, it s helpful to hange perspetive slightly. Write Rk for f − Pk,

the Taylor remainder of f at c of order k. Then the statement above, showing what a good approxima-

tion Pk is, beomes

lim
x→c

|Rk(x)|
|x− c|k

= 0.

This is good to know, but it may not really be enough; it tells us that moving x lose to c will make the

approximation better, and very quikly; roughly, when x is already lose to c, then moving it twie as lose

will make the approximation 2k times better, or you an make the approximation one deimal digit more

aurate by moving x only

k
√
10 times as lose. However, this doesn t tell us how aurate the approxima-

tion was to start with, nor how lose x has to be for this method of improving the approximation to start

working.

We an get better results if f is di�erentiable one more time (k + 1 times, not just k times) and near c

(not just at c). This strong version of Taylor s Theorem says that

Rk(x) =
w 1

t=0
(1− t)

k
f (k+1)(c− ct+ xt)(x− c)

k+1
dt,

as long as f is ontinuously di�erentiable k + 1 times (at least) between c and x. (The integral here may

exist even if f is not ontinuously di�erentiable k + 1 times, but then the value of this integral might not

be the remainder.) To be more expliit, here is the statement for the �rst few values of k:

f(x) = f(c) +
w 1

t=0
f ′(c− ct+ xt)(x− c) dt

= f(c) + f ′(c)(x− c) +
w 1

t=0
(1− t)f ′′(c− ct+ xt)(x− c)

2
dt

= f(c) + f ′(c)(x− c) +
1

2
f ′′(c)(x− c)

2
+

1

2

w 1

t=0
(1− t)

2
f ′′′(c− ct+ xt)(x− c)

3
dt

.

.

.

These statements may be proved by repeated appliation of integration by parts (and the Fundamen-

tal Theorem of Calulus, whih is why f (k+1)
must not only exist but also be ontinuous). For example,

to prove the �rst one, start on the right-hand side and integrate by parts using u = 1 (so du = 0) and
v = f(c− ct+ xt) (so dv = f ′(c− ct+ xt)(x− c) dt):

f(c) +
w 1

t=0
1f ′(c− ct+ xt)(x− c) dt = f(c) +

Ä

1f(c− ct+ xt)
ä

∣

∣

∣

1

t=0
−

w 1

t=0
f(c− ct+ xt)0

= f(c) + f
Ä

c− c(1) + x(1)
ä

− f
Ä

c− c(0) + x(0)
ä

−
w 1

t=0
0

= f(c) + f(x)− f(c)− 0 = f(x).

In general, you an prove eah statement using u = (1− t)
k
¿

k! and v = f (k)(c− ct+ xt)(x− c)
k
, integrat-

ing by parts, simplifying, and applying the previous statement.

For purposes of approximation, it s useless to atually work out the integral that appears here; if you

knew the exat value of f (k+1)
at all of the points between c and x, then you ould probably just evalu-

ate f at x diretly. However, if there is a value Mk suh that you know that f (k+1)
never has an absolute

value greater than M at any point between c and x, then you an use Mk to get a bound on the remain-

der:

|Rk| ≤
Mk

(k + 1)!
|x− c|k+1

.
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The reason for this is that we know that Rk is exatly the integral that appeared in the full version of the

theorem, and we an bound its absolute value using the bound on its integrand:

|Rk| =
∣

∣

∣

∣

1

k!

w 1

t=0
(1− t)

k
f (k+1)(c− ct+ xt)hk+1 dt

∣

∣

∣

∣

≤ 1

k!

w 1

t=0
(1− t)

k
∣

∣f (k+1)(c− ct+ xt)
∣

∣ |x− c|k+1
dt

≤ 1

k!

w 1

t=0
(1− t)

k
Mk |x− c|k+1

dt =
Mk

k!
|x− c|k+1

w 1

t=0
(1− t)

k
dt

=
Mk

k!
|x− c|k+1 1

k + 1
=

Mk

(k + 1)!
|x− c|k+1

.

To be more spei�:

|R0| = |f(x)− f(c)| ≤ M0 |x− c|

if |f ′| is never greater than M0 between c and x,

|R1| = |f(x)− (f(c) + f ′(c)(x− c))| ≤ 1

2
M1 |x− c|2

if |f ′′| is never greater than M1 between c and x,

|R2| =
∣

∣

∣

∣

f(x)−
Å

f(c) + f ′(c)h+
1

2
f ′′(c)(x− c)

2
ã

∣

∣

∣

∣

≤ 1

6
M2 |x− c|3

if |f ′′′| is never greater than M2 between c and x, et.

Finally, of ourse, we an extend from polynomials to power series and get the Taylor series of f

at c:

P∞(x) =
∞
∑

n=0

1

n!
f (n)(c)(x− c)

n
.

(When c = 0, this is the Malaurin series of f .) This power series exists as long as f is in�nitely di�er-

entiable at c, that is as long as f has derivatives of all orders at c. However, there are no theorems guar-

anteeing that this series onverges, nor that it s anything like f(x) when it does onverge. We say that

f is analyti if this series onverges to f(x) at least on some interval around c. Any funtion built out

of the usual operations is analyti, as long as it s in�nitely di�erentiable, but there are pieewise-de�ned

funtions for whih this series fails to onverge anywhere near c and others for whih it onverges to some-

thing other than f(x).
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