1 Given

$$
\mathbf{r}=\left(\mathrm{e}^{-t}, 2 \cos 3 t, 2 \sin 3 t\right)
$$

find the velocity $\mathbf{v}=\mathrm{d} \mathbf{r} / \mathrm{d} t$ and the acceleration $\mathbf{a}=\mathrm{d} \mathbf{v} / \mathrm{d} t$ when $t=0$.
2 Given

$$
\frac{\mathrm{d} \mathbf{r}}{\mathrm{~d} t}=\left\langle t^{3}+4 t, t, 2 t^{2}\right\rangle
$$

and $\mathbf{r}=(1,1,0)$ when $t=0$, find \mathbf{r} as a function of t.

3 Given

$$
\mathbf{r}=(12 \sin t,-12 \cos t, 5 t),
$$

find the length of the curve from $t=0$ to $t=2 \pi$.
4 Find

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}} .
$$

5 Find the (first) partial derivatives of

$$
f(x, y)=x^{2} \mathrm{e}^{-y}
$$

when $(x, y)=(0,1)$.
6 Given

$$
f(x, y, z)=\ln (x y+x z+x y)
$$

find the gradient $\nabla f(1,1,1)$.
7 Given

$$
u=x^{2}+y^{2},
$$

find the largest value of u subject to the condition that

$$
4 x^{2}+9 y^{2}=36
$$

8 Write the integral of $f(x, y)$ on the triangle bounded by $x=0, y=0$, and $2 x+3 y=4$ as an iterated integral.

9 Write

$$
\int_{0}^{1} \int_{0}^{x} \int_{0}^{x+y}(x+y+z) \mathrm{d} z \mathrm{~d} y \mathrm{~d} x
$$

as a sum of iterated integrals ending in $\mathrm{d} x \mathrm{~d} y \mathrm{~d} z$.
10 Write the integral of $3 r^{2} \cos \theta$, on the interior of the circle with radius 4 centred at the origin, as an iterated integral in polar coordinates.

11 Write

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}}\left(x^{2}+y^{2}+z^{2}\right) \mathrm{d} z \mathrm{~d} y \mathrm{~d} x
$$

as an iterated integral in spherical coordinates.

12 If C is the oriented curve given by

$$
\mathbf{r}=\left(t, t^{2}, t^{3}\right)
$$

for $0 \leq t \leq 1$, write

$$
\int_{C}(x \mathrm{~d} y+y \mathrm{~d} z+z \mathrm{~d} x)
$$

as an ordinary integral in t.
13 Write the flux of

$$
\mathbf{F}=\langle x, y\rangle
$$

across the curve given by

$$
x^{2}+y^{2}=1
$$

for $x, y \geq 0$, in the direction away from the origin, as an ordinary integral in the polar coordinate θ.
14 Write an integral for the surface area of the ellipsoid

$$
x^{2}+4 y^{2}+9 z^{2}=36
$$

parametrised by modified spherical coordinates.
15 Extra credit: Find the curl and divergence of

$$
\mathbf{F}(x, y, z)=\left\langle 2 x y z, \frac{x}{y^{2}}, \sin x \cos y\right\rangle .
$$

Answers

$\mathbf{1} \mathbf{v}=\langle-1,0,6\rangle, \mathbf{a}=\langle 1,-18,0\rangle$
$2 \mathbf{r}=\left(\frac{1}{4} t^{4}+2 t^{2}+1, \frac{1}{2} t^{2}+1, \frac{2}{3} t^{3}\right)$
326π
4 undefined (does not exist)
$5 f_{1}(0,1)=0, f_{2}(0,1)=0$
$\mathbf{6}\left\langle 1, \frac{2}{3}, \frac{1}{3}\right\rangle$
79
$8 \int_{0}^{2} \int_{0}^{4 / 3-2 x / 3} f(x, y) \mathrm{d} y \mathrm{~d} x$ or $\int_{0}^{4 / 3} \int_{0}^{2-3 y / 2} f(x, y) \mathrm{d} x \mathrm{~d} y$
$\mathbf{9} \int_{0}^{1} \int_{0}^{z / 2} \int_{z-y}^{1}(x+y+z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z+\int_{1}^{2} \int_{z-1}^{z / 2} \int_{z-y}^{1}(x+y+z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z+\int_{0}^{2} \int_{z / 2}^{1} \int_{y}^{1}(x+y+z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z$
$10 \int_{0}^{2 \pi} \int_{0}^{4} 3 r^{3} \cos \theta \mathrm{~d} r \mathrm{~d} \theta$
$11 \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} \rho^{3} \sin \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta$
$12 \int_{0}^{1}\left(3 t^{4}+t^{3}+2 t^{2}\right) \mathrm{d} t$
$13 \int_{0}^{\pi / 2} \mathrm{~d} \theta$
$14 \int_{0}^{2 \pi} \int_{0}^{\pi} 6 \sqrt{9+3 \sin ^{2} \phi \sin ^{2} \theta-8 \sin ^{2} \phi} \sin \phi \mathrm{~d} \phi \mathrm{~d} \theta$
$15 \nabla \times \mathbf{F}(x, y, z)=\left\langle-\sin x \sin y, 2 x y-\cos x \cos y, \frac{1}{y^{2}}-2 x z\right\rangle, \nabla \cdot \mathbf{F}(x, y, z)=2 y z-\frac{2 x}{y^{3}}$

