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All of the integrals in vector calculus can be thought of as integrals of di�erential forms of one sort or an-
other. Since integration of di�erential forms generalises in ways that integration of vector �elds cannot
(some of which are important in applications, especially to physics), it s useful to be able to think about
di�erential forms. Furthermore, one then needs fewer formulas for all of the integrals.

General principles
Here I spell out the general principles of integrating di�erential forms, but it s really the examples that
follow that will make the ideas clear.

There are three sorts of di�erential forms that we ll need: oriented forms, pseudo-oriented forms, and
unoriented forms. The oriented forms are the most straightforward kind and the simplest to calculate
with. The pseudo-oriented forms are essentially the same as oriented forms, except that their sign is deter-
mined by using the right-hand rule; if we used the left-hand rule instead, then the pseudo-oriented forms
would have opposite sign but the results of all integrals would stay the same. (It is sometimes handy to
keep track of whether something is oriented or pseudo-oriented, but you can ignore the di�erence as long
as you always use the right-hand rule.) The unoriented forms are least used in applications; they typically
arise by taking the absolute value of another form (and then possibly multiplying by a scalar).

We ll integrate these forms along various regions in space, called manifolds. These manifolds can al-
so be oriented, pseudo-oriented, or unoriented. Now the unoriented manifolds are the simplest; they are
just shapes. With an oriented manifold, we also make a choice of what direction to go along the manifold;
with a pseudo-oriented manifold, we instead make a choice of what direction to go around or across the
manifold. As you might guess, we integrate oriented forms on oriented manifolds, pseudo-oriented forms
on pseudo-oriented manifolds, and unoriented forms on unoriented manifolds.

Our manifolds will be parametrised ; we ll have one or more variables t, u, v, . . . (the parameters), tak-
ing a �nite range of values, and a function (the parametrisation) specifying which point in space corre-
sponds to which values of the parameters. Running this function over the entire range of the parameters
carves out the manifold. (We ll want our parametrisation functions to be continuously di�erentiable, in or-
der to avoid technicalities about whether the integrals are de�ned. Similarly, the forms themselves should
be continuous.)

The number of parameters used is the dimension of the manifold. This must match the rank of the
di�erential form, which is the number of di�erentials in each term of the form. These di�erentials are com-
bined using the wedge product , ∧. A key property of the wedge product is that it is anticommutative be-
tween di�erentials; that is,

dx ∧ dy = −dy ∧ dx

(much like the cross product of vectors). This also means that dx ∧ dx = 0. However, for unoriented forms,
we take the absolute value of the wedge product; then |dx ∧ dy| = |−dy ∧ dx| = |dy ∧ dx|, while |dx ∧ dx| =
|0| = 0 still.

To calculate the integral, you use the parametrisation to express the coordinates x, y, . . . in terms of
the parameters t, u, v, . . ., and di�erentiate this to get dx, dy, . . . in terms of dt,du, dv, . . ., so that the inte-
gral is entirely in terms of the parameters. We then express this as an iterated integral, making sure that
the (pseudo)-orientation (if any) matches (or putting a minus sign out front if it doesn t).

Curves
A curve C is a manifold of dimension 1. So it is given by a vector-valued function ~r = 〈x, y, . . .〉 of one
variable t (which we ll assume is continuously di�erentiable). When we orient a curve, we specify which
direction to travel along the curve; when we pseudo-orient a curve in 2 dimensions, we specify which direc-
tion to travel across the curve. (We won t need to pseudo-orient a curve in more dimensions.)

To integrate a vector �eld ~F = 〈M, N, . . .〉 along an oriented curve C, we integrate the rank-1 oriented
form ~F · d~r:

w
C

~F · d~r =
w

C
〈M, N, . . .〉 · 〈dx,dy, . . .〉 =

w
C

(M dx + N dy + · · ·) =
w

C

�
M

dx

dt
+ N

dy

dt
+ · · ·

�
dt
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or w
C

~F · d~r =
w

C

~F · d~r

dt
dt =

w
C
〈M, N, . . .〉 ·


dx

dt
,
dy

dt
, . . .

·
dt =

w
C

�
M

dx

dt
+ N

dy

dt
+ . . .

�
dt.

(There s no need to learn all of these formulas; just learn one, then put everything in terms of t and push
through.) To match orientations, make sure that the diretion along the curve as t increases is the same
direction as the curve s orientation; otherwise put a minus sign out front.

To integrate a vector �eld ~F = 〈M, N〉 across a pseudo-oriented curve C in 2 dimensions, we integrate
the rank-1 pseudo-oriented form ~F × d~r (where the cross product in 2 dimensions produces a scalar, or
rather a pseudo-scalar since the sign depends on the right-hand rule):

w
C

~F × d~r =
w

C
〈M, N〉 × 〈dx,dy〉 =

w
C

(M dy −N dx) =
w

C

�
M

dy

dt
−N

dx

dt

�
dt

or w
C

~F × d~r =
w

C

~F × d~r

dt
dt =

w
C
〈M,N〉 ×


dx

dt
,
dy

dt

·
dt =

w
C

�
M

dy

dt
−N

dx

dt

�
dt.

To match pseudo-orientations, make sure that the direction along the curve as t increases is counterclock-
wise from the direction of the curve s pseudo-orientation; otherwise put a minus sign out front.

To integrate a scalar �eld f on an unoriented curve C, we integrate the rank-1 unoriented form f ds,
where s has no meaning by itself but instead ds is the unoriented form ‖dr‖:

w
C

f ds =
w

C
f ‖d~r‖ =

w
C

f ‖〈dx,dy, . . .〉‖ =
w

C
f
È

(dx)2 + (dy)2 + · · · =
w

C
f

s�
dx

dt

�2

+
�

dy

dt

�2

+ · · · |dt|

or

w
C

f ds =
w

C
f ‖d~r‖ =

w
C

f

d~r

dt

 |dt| =
w

C
f

dx

dt
,
dy

dt
, . . .

· |dt| =
w

C
f

s�
dx

dt

�2

+
�

dy

dt

�2

+ · · · |dt|.

Now there is no orientation to match; instead, make sure that t increases, so that |dt| = dt.

Surfaces
A surface R is a manifold of dimension 2. So it is given by a vector-valued function ~r = 〈x, y, . . .〉 of two
variables u, v (which we ll assume is continuously di�erentiable). When we pseudo-orient a surface in 3 di-
mensions, we specify which direction to travel across the curve. (We won t need to pseudo-orient a surface
in more dimensions, nor will we orient any at all.)

To integrate a vector �eld ~F = 〈M, N,O〉 across a pseudo-oriented surface R in 3 dimensions, we in-
tegrate the rank-2 pseudo-oriented form ~F · d~S, where ~S has no meaning by itself, but instead d~S is the
psuedo-vector-valued form 1/2 d~r ∧̂ d~r (which as a vector is multiplied by the cross product and as a dif-
ferential form is multiplied by the wedge product), which works out to 〈dy ∧ dz, dz ∧ dx, dx ∧ dy〉 (using
the right-hand rule) or ∂~r/∂u× ∂~r/∂v du ∧ dv:

w
R

~F · d~S =
w

R
〈M,N,O〉 · 〈dy ∧ dz, dz ∧ dx,dx ∧ dy〉 =

w
R
(M dy ∧ dz + N dz ∧ dx + O dx ∧ dy)

=
w

R

�
M

�
∂y
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∂z

∂v
− ∂y

∂v

∂z

∂u

�
+ N

�
∂z
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∂x
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− ∂z

∂v
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�
+ O

�
∂x
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∂y
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��
du ∧ dv

or
w

R

~F · d~S =
w

R
〈M, N,O〉 · ∂~r

∂u
× ∂~r

∂v
du ∧ dv =

w
R
〈M, N, O〉 ·


∂x

∂u
,
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·
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·
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=
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�
+ N

�
∂z

∂u

∂x

∂v
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�
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To match pseudo-orientations, make sure that, as you curl from the direction in which u increases to-
wards the direction in which v increases, the right-hand rule gives the direction of the surface s pseudo-
orientation; otherwise put a minus sign out front.

To integrate a scalar �eld f on an unoriented surface R, we integrate the rank-2 unoriented form
f dσ, where σ has no meaning by itself but instead dσ is the unoriented form ‖dS‖:
w

R
f dσ =

w
R
f
d~S

 =
w

R
f ‖〈dy ∧ dz, dz ∧ dx, dx ∧ dy〉‖ =

w
R
f
È

(dy ∧ dz)2 + (dz ∧ dx)2 + (dx ∧ dy)2

=
w

R
f
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+
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|du ∧ dv|

or
w

R
f dσ =

w
R
f
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 =
w
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|du ∧ dv|.

Again there is no orientation to match; instead, make sure that u and v both increase, so that |du ∧ dv| =
dudv.

The Stokes Theorem
The (second) Fundamental Theorem of Calculus states that

w b

a
df = f |ba.

This works just as well when there are several independent variables as when there is just one. In this
case, we can also write df as ∇f · d~r to get the theorem

w b

a
∇f · d~r = f |ba.

Although this is now a theorem about integrating a gradient along a curve, in essence it is still just the
FTC, a theorem about integrating di�erentials.

This theorem generalises to di�erential forms of higher rank, where it is called the Stokes Theorem.
To do this properly, we need to know two things: how to take the di�erential of a di�erential form, and
how to take the endpoints of manifold other than a curve.

With endpoints, we re really dealing with the boundary of a manifold. The boundary of a curve ori-
ented from a to b consists of both {a} and {b}, the former negatively and the latter positively. If you think
of a point {a} as a manifold of dimension 0 and think of a scalar quantity f as a di�erential form of rank 0,
then we integrate f on {a} by simply taking the value of f at a:

r
{a}f = f |a. Then the FTC can be writ-

ten as w
C

df =
w

∂C
f ,

where the symbol `∂' indicates the boundary. Then the boundary of a surface is a curve, and the bound-
ary a bounded region of space is a surface.

When we take the di�erential of a di�erential form, we get another di�erential form if we take the
exterior di�erential; the exterior di�erential of a form ω is d ∧ ω. When we add forms, the exterior di�er-
ential obeys the Sum Rule as usual; when we multiply them, we have a kind of Product Rule too. This is
the same as the usual Product Rule, except that we must keep track of the order of multiplication, and
also remember to insert a minus sign when we reverse the order of two di�erentials. Finally, the exterior
di�erential of a di�erential is zero. For example,

d ∧ (x dy) = dx ∧ dy + x d ∧ dy = dx ∧ dy + 0 = dx ∧ dy.
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When we relate di�erential forms to vector �elds, we ll also use various ways of taking derivatives of
vector �elds. These can be expressed using ∇ and one of the ways of multiplying vectors: the divergence
∇ · ~F is a scalar �eld, and the curl ∇× ~F is a pseudo-vector �eld in 3 dimensions or a pseudo-scalar �eld
in 2 dimensions. Speci�cally,

∇ · F = 〈∂/∂x, ∂/∂y, . . .〉 · 〈M, N, . . .〉 =
∂M

∂x
+

∂N

∂y
+ · · · ,

and
∇× ~F = 〈∂/∂x, ∂/∂y, ∂/∂z〉 × 〈M,N,O〉 =


∂O

∂y
− ∂N

∂z
,
∂M

∂z
− ∂O

∂x
,
∂N

∂x
− ∂M

∂y

·
in 3 dimensions, or

∇× ~F = 〈∂/∂x, ∂/∂y〉 × 〈M,N〉 =
∂N

∂x
− ∂M

∂y

in 2 dimensions.
Now suppose that a surface R is bounded by a curve ∂R = C. The Stokes Theorem tells us that

w
R
dα =

w
∂R

α,

where α is a di�erential form of rank 1. If I integrate a vector �eld ~F along C, then I m really integrating
the di�erential form ~F · d~r, so w

∂R

~F · d~r =
w

R
d
�

~F · d~r
�
.

But in 3 dimensions, this last quantity is the same as
w

∂R

~F · d~r =
w

R
∇× ~F · dS;

and in 2 dimensions, it s the same as
w

∂R

~F · d~r =
w

R
∇× ~F dA,

where dA is the area form dx ∧ dy. These are the theorems traditionaly called Stokes ′s Theorem and Green ′s
Theorem, respectively. If, in 2 dimensions, I integrate ~F across C, then

w
∂R

~F × d~r =
w

R
∇ · ~F dA

is another form of Green s Theorem.
Next, suppose that a bounded region Q in space is bounded by a surface ∂Q = R. Now the Stokes

Theorem tells us that w
Q

dα =
w

∂Q
α,

where now α is a di�erential form of rank 2. If I integrate a vector �eld ~F across R, then I m realling inte-
grating ~F · dS, so w

∂Q

~F · dS =
w

Q
d
�

~F · dS
�
.

But in 3 dimensions, this last quantity is the same as
w

∂Q

~F · dS =
w

Q
∇ · ~F dV ,

where dV is the volume form dx ∧ dy ∧ dz. This is the theorem traditionally called Gauss ′s Theorem.
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