17 The magnitude of $\mathbf{v}$ is

$$
\|\mathbf{v}\|=\sqrt{(1)^{2}+(1)^{2}+(0)^{2}}=\sqrt{2}
$$

The magnitude of $\mathbf{u}$ is

$$
\|\mathbf{u}\|=\sqrt{(2)^{2}+(1)^{2}+(-2)^{2}}=3
$$

The dot product of $\mathbf{v}$ and $\mathbf{u}$ is

$$
\mathbf{v} \cdot \mathbf{u}=(1)(2)+(1)(1)+(0)(-2)=3 .
$$

The dot product of $\mathbf{u}$ and $\mathbf{v}$ is

$$
\mathbf{u} \cdot \mathbf{v}=(2)(1)+(1)(1)+(-2)(0)=3 .
$$

The cross product of $\mathbf{v}$ and $\mathbf{u}$ is

$$
\mathbf{v} \times \mathbf{u}=\langle(1)(-2)-(0)(1),(0)(2)-(1)(-2),(1)(1)-(1)(2)\rangle=\langle-2,2,-1\rangle=-2 \mathbf{i}+2 \mathbf{j}-\mathbf{k} .
$$

The cross product of $\mathbf{u}$ and $\mathbf{v}$ is

$$
\mathbf{u} \times \mathbf{v}=\langle(1)(0)-(-2)(1),(-2)(1)-(2)(0),(2)(1)-(1)(1)\rangle=\langle 2,-2,1\rangle=2 \mathbf{i}-2 \mathbf{j}+\mathbf{k} .
$$

The magnitude of the cross product of $\mathbf{v}$ and $\mathbf{u}$ is

$$
\|\mathbf{v} \times \mathbf{u}\|=\sqrt{(-2)^{2}+(2)^{2}+(-1)^{2}}=3
$$

The angle between $\mathbf{v}$ and $\mathbf{u}$ is

$$
\arccos \left(\frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{v}\|\|\mathbf{u}\|}\right)=\arccos \left(\frac{(3)}{(\sqrt{2})(3)}\right)=\frac{\pi}{4}
$$

The component of $\mathbf{u}$ in the direction of $\mathbf{v}$ is

$$
\frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{v}\|}=\frac{(3)}{(\sqrt{2})}=\frac{3 \sqrt{2}}{2}
$$

The projection of $\mathbf{u}$ onto $\mathbf{v}$ is

$$
\frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{v}\|^{2}} \mathbf{v}=\frac{(3)}{(\sqrt{2})^{2}}\langle 1,1,0\rangle=\frac{3}{2}\langle 1,1,0\rangle=\left\langle\left(\frac{3}{2}\right)(1),\left(\frac{3}{2}\right)(1),\left(\frac{3}{2}\right)(0)\right\rangle=\left\langle\frac{3}{2}, \frac{3}{2}, 0\right\rangle=\frac{3}{2} \mathbf{i}+\frac{3}{2} \mathbf{j} .
$$

31 Either

$$
\mathbf{r}=(1,2,3)+t\langle-3,0,7\rangle=(1-3 t, 2,3+7 t)
$$

or

$$
x=1-3 t, y=2, z=3+7 t
$$

